

# Malaysian Registry of Intensive Care

## Report for 2015



## Malaysian Registry of Intensive Care Report for 2015



Prepared by Dato' Dr Jenny Tong May Geok Dr Tai Li Ling Dr Tan Cheng Cheng Dr Lim Chew Har Dr Nahla Irtiza bt Ismail

Technical Committee of the Malaysian Registry of Intensive Care June 2016 © Malaysian Registry of Intensive Care

#### **Published by:**

Malaysian Registry of Intensive Care Clinical Research Centre Ministry of Health Malaysia

#### Disclaimer:

This work may be reproduced in whole or part for study or training purposes, subject to the inclusion of an acknowledgement of the source.

#### Suggested citation:

Jenny Tong May Geok, Tai Li Ling, Tan Cheng Cheng, Lim Chew Har, Nahla Irtiza bt Ismail Malaysian Registry of Intensive Care 2015 report

#### **Electronic version:**

This report can be downloaded at MRIC website: www.mric.org.my

#### CONTENTS

|               |                |                                   | Page |
|---------------|----------------|-----------------------------------|------|
| Contents      | 3              |                                   | 4    |
| Report S      | umma           | ry                                | 5    |
| Acknow        | ledgen         | nent                              | 6    |
| Forewor       | d              |                                   | 7    |
| MRIC Te       | echnica        | l Committee 2015                  | 8    |
| Participa     | ting H         | ospitals                          | 9    |
| Categori      | es of IC       | วัน                               | 11   |
| Site Inve     | stigato        | rs and Source Data Providers 2015 | 13   |
| Abbreviations |                |                                   | 16   |
| List of Ta    | List of Tables |                                   |      |
| List of Fi    | gures.         |                                   | 18   |
| Introduc      | tion           |                                   | 19   |
| Results       |                |                                   |      |
| Secti         | ion A          | General Information               | 21   |
| Secti         | on B           | Patient Characteristics           | 32   |
| Secti         | on C           | Interventions                     | 57   |
| Secti         | ion D          | Complications                     | 70   |
| Secti         | on E           | Mortality Outcomes                | 86   |
| Secti         | on F           | Quality Improvement activities    | 94   |
| Secti         | on G           | Dengue infection 2011 – 2015      | 108  |
| Summar        | y              |                                   | 113  |
| Reference     | es             |                                   | 115  |

#### **REPORT SUMMARY**

This is the report on all intensive care admissions to the 50 participating centres from 1<sup>st</sup> January to 31<sup>st</sup> December 2015.

The following are the main findings:

- 1. The total number of ICU beds in the 49 MOH participating units was 660 with a median bed occupancy rate of 91.6%.
- 2. The number of cases analysed was 39,595, an increase of 4% over the previous year.
- 3. The percentage of patients denied admission due to the unavailability of ICU beds was 32%. This figure had remained fairly the same in the last five years.
- 4. The average age of the patients, excluding those below 18 years, was 49.5 years.
- 5. The average duration of ICU and hospital stay was 4.8 and 14.4 days respectively.
- 6. In MOH hospitals, 69% of ICU admissions were non-operative patients.
- 7. Direct admissions to MOH ICUs from the emergency department had increased almost three-fold over the past 10 years from 10% in 2005 to 33% in 2015.
- 8. Dengue infection, sepsis and head injury were the three most common diagnoses leading to ICU admission in MOH hospitals in 2015. The in-hospital mortality rates for this group of patients were 8.9%, 51.2% and 22.0% respectively.
- 9. The average SAPS II score was 36.8, which carries a predicted in-hospital mortality of 30.4%.
- 10. In MOH hospitals, 75% of patients received invasive ventilation with an average duration of 4.7 days.
- 11. The percentage of patients who received non-invasive ventilation increased more than three-fold from 5.1% in 2005 to 18.6% in 2015.
- 12. The incidence of ventilator-associated pneumonia in MOH ICUs had decreased by more than half, from 6.8 to 2.4 per 1000 ventilator days, in the last five years.
- 13. The incidence of central venous catheter-related bloodstream infection in MOH ICUs was 0.8, 0.7 and 0.4 per 1000 catheter days for 2013, 2014 and 2015 respectively
- 14. The crude in-ICU and in-hospital mortality rates for MOH hospitals were 18.8% and 26.5% respectively.
- 15. The crude in-ICU and in-hospital mortality rates for UMMC were 18.4% and 25.8% respectively.
- 16. The mean standardised mortality ratio was 0.69 [95%C.I. 0.47-0.95] and 0.68 [95%C.I.0.45 0.98] for MOH and UMMC ICUs respectively.

#### ACKNOWLEDGEMENT

The Technical Committee of the Malaysian Registry of Intensive Care would like to thank the following:

All site investigators and source data providers The heads of Department of Anaesthesia and Intensive Care of participating ICUs Staff of the participating ICUs Quality of Health Care Unit, Medical Development Division, Ministry of Health National Clinical Research Centre, Ministry of Health Health Informatics Centre, Planning and Development Division, Ministry of Health Malaysian Society of Intensive Care All who have contributed in one way or another to the MRIC

6

#### FOREWORD

Time really flies and I have been given another opportunity for me to write the foreword for the MRIC report. This message is filled with pride for the tremendous achievements by this group of hardworking intensivists who have consistently produced annual reports that has been a reference source for the Ministry of Health for the continuous improvement in the delivery of critical care services to patients.

This report includes all intensive care admissions to the 50 participating centres from 1<sup>st</sup> January to 31<sup>st</sup> December 2015. The total number of ICU beds in the 49 MOH participating centres was 660, with a median bed occupancy of 91.6%. The number of cases analysed for year 2015 was 39,595, an increase of 1.7% over the previous year. The percentage of patients denied admission due to the unavailability of ICU beds was 32% in 2015.

Dengue infection, sepsis and head injury were the three most common diagnoses leading to ICU admission. 75% of patients in MOH ICUs received invasive ventilation with an average duration of 4.7 days. The percentage of patients who received non-invasive ventilation increased from 5.1% in 2005 to 18.6% in 2015 displaying the preferential trend towards non invasive ventilation. The incidence of VAP had decreased by more than half from 6.8 to 2.4 per 1000 ventilator days over the last five years.

All the MOH ICUs have in place several quality indicators: Ventilator Care Bundle, Central Venous Catheter Care Bundle, Early Mobility in ICU and the SSKIN bundle. I believe that the implementation of these quality indicators will improve the outcome of the patients in ICU.

I take this opportunity to thank Dato' Dr Jenny Tong May Geok, Dr Tai Li Ling, Dr Lim Chew Har, Dr Tan Cheng Cheng, Dr Nahla Irtiza Ismail and Sister Lim Siew Kim for working together to produce this report. I want to acknowledge the hard work of all the site investigators and source data collectors who have contributed to the registry. I also want to express my thanks to the National Clinical Research Centre, Health Informatics Centre, Ministry of Health and Medical Development Division, Ministry of Health for their continued guidance and support.

Dr. Sivasakthi V Head of the Anaesthesia and Intensive Care Services Ministry of Health Malaysia

#### TECHNICAL COMMITTEE MALAYSIAN REGISTRY OF INTENSIVE CARE 2015

| Advisors               | Datin Dr Sivasakthi Velayuthapillai<br>Consultant Anaesthesiologist and Head<br>Department of Anaesthesia and Intensive Care<br>Hospital Kuala Lumpur     |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Principal Investigator | Dato' Dr Jenny Tong May Geok<br>Consultant Anaesthesiologist and Head<br>Department of Anaesthesia and Intensive Care<br>Hospital Tuanku Ja'afar Seremban |
| Co-Investigators       | Dr Tai Li Ling<br>Consultant Intensivist<br>Department of Anaesthesia and Intensive Care<br>Hospital Kuala Lumpur                                         |
|                        | Dr Tan Cheng Cheng<br>Consultant Intensivist<br>Department of Anaesthesia and Intensive Care<br>Hospital Sultanah Aminah Johor Bahru                      |
|                        | Dr As-Niza Abdul Shukor<br>Consultant Anaesthesiologist and Head<br>Department of Anaesthesia and Intensive Care<br>Hospital Taiping                      |
|                        | Dr Ahmad Shaltut Othman<br>Consultant Intensivist<br>Department of Anaesthesia and Intensive Care<br>Hospital Sultanah Bahiyah Alor Setar                 |
|                        | Dr Lim Chew Har<br>Consultant Intensivist<br>Department of Anaesthesia and Intensive Care<br>Hospital Pulau Pinang                                        |
| Project Manager        | Sr Lim Siew Kim<br>Department of Anaesthesia and Intensive Care<br>Hospital Kuala Lumpur                                                                  |

#### PARTICIPATING HOSPITALS

| No.   | Name of hospital                               | Abbreviation |
|-------|------------------------------------------------|--------------|
| Sites | since 2002                                     |              |
| 1.    | Hospital Sultanah Bahiyah Alor Setar           | AS           |
| 2.    | Hospital Pulau Pinang                          | PP           |
| 3.    | Hospital Raja Permaisuri Bainun Ipoh           | IPH          |
| 4.    | Hospital Kuala Lumpur                          | KL           |
| 5.    | Hospital Selayang                              | SLG          |
| 6.    | Hospital Tengku Ampuan Rahimah Klang           | KLG          |
| 7.    | Hospital Tuanku Ja'afar Seremban               | SBN          |
| 8.    | Hospital Melaka                                | MLK          |
| 9.    | Hospital Sultanah Aminah Johor Bahru           | ЈВ           |
| 10.   | Hospital Tengku Ampuan Afzan Kuantan           | KTN          |
| 11.   | Hospital Sultanah Nur Zahirah Kuala Terengganu | KT           |
| 12.   | Hospital Raja Perempuan Zainab II Kota Bharu   | KB           |
| 13.   | Hospital Umum Sarawak Kuching                  | КСН          |
| 14.   | Hospital Queen Elizabeth Kota Kinabalu         | KK           |
|       |                                                |              |
| Sites | since 2005                                     | I            |
| 15.   | Hospital Sultan Abdul Halim Sungai Petani      | SP           |
| 16.   | Hospital Putrajaya                             | РЈҮ          |
| 17.   | Hospital Pakar Sultanah Fatimah Muar           | MUR          |
| 18.   | Hospital Teluk Intan                           | TI           |
| 19.   | Hospital Taiping                               | TPG          |
| 20.   | Hospital Seberang Jaya                         | SJ           |
| 21.   | Hospital Kajang                                | KJG          |
| 22.   | Hospital Tuanku Fauziah Kangar                 | KGR          |
|       |                                                |              |
| Sites | since 2006                                     | I            |
| 23.   | Hospital Sultan Haji Ahmad Shah Temerloh       | TML          |
| 24.   | Hospital Tuanku Ampuan Najihah Kuala Pilah     | КР           |
| 25.   | Hospital Sri Manjung                           | SMJ          |
| 26.   | Hospital Batu Pahat                            | BP           |
|       |                                                | k            |

| 27.   | Hospital Tawau                        | TW   |
|-------|---------------------------------------|------|
| 28.   | Hospital Miri                         | MRI  |
| 29.   | Hospital Kulim                        | KLM  |
| 30.   | Hospital Serdang                      | SDG  |
| Sites | since 2010                            |      |
| 31.   | Hospital Sibu                         | SB   |
| 32.   | Hospital Duchess of Kent Sandakan     | DKS  |
| 33.   | Hospital Sultan Ismail Johor Bahru    | SI   |
| 34.   | Hospital Sungai Buloh                 | SBL  |
| 35.   | Hospital Ampang                       | AMP  |
| 36.   | Hospital Wanita dan Kanak-Kanak Sabah | LIK  |
| Sites | since 2012                            |      |
| 37.   | University Malaya Medical Centre      | UMMC |
| 38.   | Langkawi                              | LKW  |
| 39.   | Bukit Mertajam                        | ВМ   |
| 40.   | Slim River                            | SLR  |
| 41.   | Port Dickson                          | PD   |
| 42.   | Kuala Krai                            | KKR  |
| 43.   | Segamat                               | SGT  |
| 44.   | Tanah Merah                           | TM   |
| 45.   | Kemaman                               | KEM  |
| 46.   | Kuala Lipis                           | KLP  |
| 47.   | Labuan                                | LAB  |
| 48.   | Keningau                              | KEN  |
| 49.   | Bintulu                               | BIN  |
| 50.   | Lahad Datu                            | LD   |

**CATEGORIES OF ICU** *Based on the number of ICU admissions in 2015, for the purpose of MRIC 2015 report* 

| Parti | cipating sites                                    | Number of admissions |
|-------|---------------------------------------------------|----------------------|
| Parti | cipating sites with $\geq$ 1000 admissions        |                      |
| 1     | Hospital Sungai Buloh                             | 2313                 |
| 2     | Hospital Tengku Ampuan Rahimah Klang              | 2184                 |
| 3     | Hospital Kuala Lumpur                             | 1985                 |
| 4     | Hospital Sultanah Aminah Johor Bharu              | 1719                 |
| 5     | Hospital Sultan Ismail Johor Bahru                | 1473                 |
| 6     | Hospital Melaka                                   | 1430                 |
| 7     | Hospital Sultanah Nur Zahirah Kuala<br>Terengganu | 1398                 |
| 8     | Hospital Selayang                                 | 1392                 |
| 9     | Hospital Sultanah Bahiyah Alor Setar              | 1363                 |
| 10    | Hospital Raja Permaisuri Bainun Ipoh              | 1328                 |
| 11    | Hospital Sibu                                     | 1275                 |
| 12    | Hospital Raja Perempuan Zainab II Kota Bharu      | 1267                 |
| 13    | Hospital Pulau Pinang                             | 1172                 |
| 14    | Hospital Umum Sarawak Kuching                     | 1143                 |
| 15    | Hospital Taiping                                  | 1126                 |
| 16    | Hospital Tengku Ampuan Afzan Kuantan              | 1043                 |
| 17    | Hospital Sultan Abdul Halim Sungai Petani         | 1015                 |
| Parti | cipating sites with 500 - 999 admissions          |                      |
| 18    | Hospital Queen Elizabeth Kota Kinabalu            | 925                  |
| 19    | Hospital Duchess of Kent Sandakan                 | 923                  |
| 20    | Hospital Sultan Haji Ahmad Shah Temerloh          | 828                  |
| 21    | Hospital Putrajaya                                | 764                  |
| 22    | Hospital Serdang                                  | 756                  |
| 23    | Hospital Ampang                                   | 671                  |
| 24    | Hospital Pakar Sultanah Fatimah Muar              | 611                  |
| 25    | Hospital Sultanah Nora Ismail Batu Pahat          | 546                  |
| 26    | Hospital Tuanku Ampuan Najihah Kuala Pilah        | 545                  |
| 27    | Hospital Tuanku Ja'afar Seremban                  | 542                  |
| 28    | Hospital Kulim                                    | 526                  |

| 29   | Hospital Seberang Jaya                | 475  |
|------|---------------------------------------|------|
| 30   | Hospital Kajang                       | 464  |
| 31   |                                       | 444  |
|      | Hospital Tawau                        |      |
| 32   | Hospital Sri Manjung                  | 441  |
| 33   | Hospital Teluk Intan                  | 424  |
| 34   | Hospital Kuala Krai                   | 391  |
| 35   | Hospital Miri                         | 377  |
| 36   | Hospital Tuanku Fauziah Kangar        | 355  |
| 37   | Hospital Bintulu                      | 315  |
| 38   | Hospital Tanah Merah                  | 308  |
| 39   | Hospital Segamat                      | 290  |
| 40   | Hospital Port Dickson                 | 230  |
| 41   | Hospital Bukit Mertajam               | 218  |
| 42   | Hospital Slim River                   | 201  |
| 43   | Hospital Langkawi                     | 195  |
| 44   | Hospital Labuan                       | 184  |
| 45   | Hospital Kemaman                      | 179  |
| 46   | Hospital Wanita dan Kanak-Kanak Sabah | 154  |
| 47   | Hospital Lahad Datu                   | 150  |
| 48   | Hospital Keningau                     | 136  |
| 49   | Hospital Kuala Lipis                  | 107  |
| Univ | rersity hospital                      |      |
| 50   | University Malaya Medical Centre      | 1294 |

### LIST OF SITE INVESTIGATORS AND SOURCE DATA COLLECTORS

## January - December 2015

| No | Hospital                                 | Site investigator                         | Source data collectors                                                                                                |
|----|------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 1  | Sultanah Bahiyah Alor Setar              | Dr Ahmad Shaltut Othman                   | Sr Teoh Shook Lian<br>SN Hafisoh Ahmad<br>SN Haslina Khalid<br>SN Noorazimah Salleh<br>SN Faten Ramiza Ahmad Abdullah |
| 2  | Pulau Pinang                             | Dr Lim Chew Har                           | SN Siti Hazlina Bidin<br>SN Rosmawati Yusoff<br>SN Emeelia Zuzana Abdul Wahab                                         |
| 3  | Raja Permaisuri Bainun Ipoh              | Dr Foong Kit Weng                         | SN Saadiah Bidin<br>SN Ng Pek Yoong<br>SN Thila                                                                       |
| 4  | Kuala Lumpur                             | Dr Tai Li Ling                            | SN Ismee Jusoh<br>SN Nuradzlinda Saidin                                                                               |
| 5  | Selayang                                 | Dr Laila Kamariah Kamalul<br>Baharin      | SN Marliana Arshad                                                                                                    |
| 6  | Tengku Ampuan Rahimah<br>Klang           | Dr Sheliza Wahab                          | SN Latifah Omar<br>SN Tai Yoke Ching<br>SN Rosenah Abdul Rahman                                                       |
| 7  | Tuanku Ja'afar Seremban                  | Dato' Dr Jenny Tong May<br>Geok           | SN Farawahida Ahmad                                                                                                   |
| 8  | Melaka                                   | Dr Nahla Irtiza Ismail                    | Sr Zaliha Emperan<br>SN Norina Abd Kadir                                                                              |
| 9  | Sultanah Aminah Johor<br>Bahru           | Dr Tan Cheng Cheng                        | Sr Marian Sais ak Sipit<br>SN Aishah Abu Bakar<br>AMO Mohd Adib Jasni<br>AMO Anand Sivasamy<br>AMO Hidayah Hussin     |
| 10 | Tengku Ampuan Afzan<br>Kuantan           | Dr Hafizah Mohammad                       | Sr Gan Soo Heng<br>SN Aminah Abd Hamid<br>SN Nik Rosliza Nik Daud<br>SN Linda Idris                                   |
| 11 | Sultanah Nur Zahirah Kuala<br>Terengganu | Dr Mohd Ridhwan Mohd<br>Nor               | SN Zauwiah Idris<br>SN Aslinawati Chik                                                                                |
| 12 | Raja Perempuan Zainab II<br>Kota Bharu   | Dr Wan Nasrudin Wan<br>Ismail             | Sr Azizum Ismail<br>SN Roslita Abd Rahman                                                                             |
| 13 | Umum Sarawak Kuching                     | Dr.Jamaidah Jamhuri                       | SN Sabia Lew<br>SN Rosnica Jiton<br>SN Sharon Ivy Gombek                                                              |
| 14 | Queen Elizabeth Kota<br>Kinabalu         | Dr Lily Ng Mooi Hang<br>Dr Khoo Tien Meng | SN Conny Chong Chiew Fah<br>SN Saihin Maun<br>SN Suzie Tinus<br>SN Winnie Yasin                                       |

| 15 | Sultan Abdul Halim Sungai<br>Petani  | Dr Rosman Noor Ali                    | SN Zainun Awang                                                                                      |
|----|--------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------|
| 16 | Putrajaya                            | Dr Fauziah Yusoff                     | Sr Latifah Mohd Korib<br>SN Maznah Muhamad                                                           |
| 17 | Pakar Sultanah Fatimah<br>Muar       | Dr Suzaliatun Kasbullah               | SN Mazlidah Osman<br>SN Nurazlin Jawad<br>SN Fazal Naim Ramli                                        |
| 18 | Teluk Intan                          | Dr Noor Azira Haron                   | SN Azliza Zakaria<br>SN Rohayu Dalila Yusof                                                          |
| 19 | Taiping                              | Dr As-Niza Abdul Shukor               | SN Salihah Ahmad<br>SN Che Zakiah Othman<br>SN Rozieyana Mohd Razali                                 |
| 20 | Seberang Jaya                        | Dr Vellan Sinnathamby                 | SN Siti Noormi Ahmad<br>SN Mira Nabila Ramlan                                                        |
| 21 | Kajang                               | Dr Nursuhaila Mohd Amin               | SN Normaizana Ismail<br>SN Rosnani binti Ab.Latip<br>SN Suriani Mat Saad                             |
| 22 | Tuanku Fauziah Kangar                | Dr Azilah Desa                        | Sr Che Salma Abdul Rahman<br>SN Zarina Mat Bistaman<br>SN Norazlisyan Ramli<br>SN Norshaheera Nalini |
| 23 | Sultan Haji Ahmad Shah<br>Temerloh   | Dr Rahimah Haron                      | Sr Rakiah Mohd Noor<br>SN Norliza Ismail<br>SN Rohayu Yusof                                          |
| 24 | Tuanku Ampuan Najihah<br>Kuala Pilah | Dr Zalifah Nordin                     | SN Norhafidah Ismail<br>Sr Khadijah Md Taher                                                         |
| 25 | Sri Manjung                          | Dr Khairudin Zainal Abidin            | Sr Hartini Abd Rahman<br>SN Salbiah Abdul Rashid<br>SN Norfaizal Abdul Majid                         |
| 26 | Batu Pahat                           | Dr Nasrudin Bunasir                   | SN Norhaezah Jani                                                                                    |
| 27 | Tawau                                | Dr Sein Win                           | SN Lilybeth Feliciano Ferez<br>SN Sarwah Isa<br>SN Sharifah Maznah Habib Muhammad                    |
| 28 | Miri                                 | Dr Norhuzaimah Julai<br>Abdul Julaihi | SN Noriah Ilai<br>SN Zuriha Achim                                                                    |
| 29 | Kulim                                | Dr Chua Kok Boon                      | Sr Mahani binti Hassan<br>SN Mohana Omar<br>SN Bahayah Mohamed Bakari<br>SN Che Asmah Haji Md Isa    |
| 30 | Serdang                              | Dr Nazarinna Muhamad                  | Sr Siti Ainah Buang<br>SN Sarina Jamhari                                                             |
| 31 | Sibu                                 | Dr Anita Alias                        | SN Yong Suk Moi                                                                                      |
| 32 | Duchess of Kent Sandakan             | Dr Rusnah Abd Rahman                  | Sr Noorasmah Hassim<br>SN Norahimah Dulraman<br>SN Sofiah Yampi                                      |

| 33 | Sultan Ismail Johor Bahru           | Dr Azmin Huda Abd Rahim                                             | Sr Azleena Mohd Yusop<br>SN Norelessa Abd Aziz<br>SN Salina Idris<br>SN Khashikin Wahab<br>SN Amira Ruduan |
|----|-------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 34 | Sungai Buloh                        | Dr Shanti Ratnam                                                    | Matron Sri Jayanthi Gobalan<br>SN Siti Salwa Mohd Latif                                                    |
| 35 | Ampang                              | Dr Rusnah Ab.Latif                                                  | Sr Normazlin Md Derus<br>SN Amiza Dyana Abu Amin<br>SN Asilah Fatin<br>SN Juliana Ismail                   |
| 36 | Wanita dan Kanak-Kanak<br>Sabah     | Dr Lorrain Lim Tze Chi                                              | Sr Siti Rajiah bt Muslimin<br>SN Dayang Noreenz Mohd Yusoh<br>SN Yusnita bt Yunus                          |
| 37 | University Malaya Medical<br>Centre | Dr Vineya Rai<br>Dr Mohd Shahnaz Hassan<br>Dr Mohd Idzwan Zakaria   | Matron Azizah Md Lajis<br>MLT Nur Aina Muhamad Affandi                                                     |
| 38 | Langkawi                            | Dr Suriana Mohd Abu<br>Bakar                                        | Sr Hamiza Harun                                                                                            |
| 39 | Bukit Mertajam                      | Dr Vellan Sinnathamby                                               | Sr Norhizan Ab Tholib<br>SN Lai Lian Chooi                                                                 |
| 40 | Slim River                          | Dr Tin Tin Myint                                                    | Sr Khairol Nazimah Musa<br>SN Suliati Baghdadi                                                             |
| 41 | Port Dickson                        | Dr Hema Malini<br>Manogharan                                        | Sr Hapisah Mat<br>SN Muhazni Mohammad                                                                      |
| 42 | Kuala Krai                          | Dr Norhafidza Ghazali                                               | Sr Norlela Ismail<br>SN Salma Ismail                                                                       |
| 43 | Segamat                             | Dr Zawiyah Kassim                                                   | Sr Hasneyza Baharin                                                                                        |
| 44 | Tanah Merah                         | Dr Mohd Azmi Mamat                                                  | Sr Norzilawati Ramli                                                                                       |
| 45 | Kemaman                             | Dr Ahmad Nizam Ismail                                               | Sr Rosmazariawati Zahari<br>SN Inu-Zubaini Mohammad Zain                                                   |
| 46 | Kuala Lipis                         | Dr Sharihanim Hussain                                               | Sr Potchaine Ek Kam<br>SN Nik Arienti Nik Man<br>SN Rohaida Ibrahim                                        |
| 47 | Labuan                              | Dr Betty Shee Ching Lee                                             | Sr Roslin Akiu<br>Sr Eramanis Abd Hamid<br>SN Hafizah Ejab                                                 |
| 48 | Keningau                            | Dr Maswiana Abdul Majid                                             | Sr Haineh Amin<br>SN Aine Gadol                                                                            |
| 49 | Bintulu                             | Dr Hairatun Ida Md<br>Hamzah (till Aug 2015)<br>Dr Soon Chien Chang | Sr Jennifer Anak Sahim<br>SN Ann Lampung<br>SN Maureen Lee Pheey<br>SN Ubong Atan Tze                      |
| 50 | Lahad Datu                          | Dr Mohd Rohaizad Zamri                                              | Sr Sanisah Lakim<br>SN Mesrah Nordin<br>SN Sasalinnah Salim                                                |

#### ABBREVIATIONS

| Adm.              | Admission                                                    |
|-------------------|--------------------------------------------------------------|
| AKI               | Acute kidney injury                                          |
| ALI               | Acute lung injury                                            |
| AMO               | Assistant medical officer                                    |
| AOR               | At own risk                                                  |
| APACHE II         | Acute Physiologic and Chronic Health Evaluation (Version II) |
| ARDS              | Acute respiratory distress syndrome                          |
| BOR               | Bed occupancy rate                                           |
| CRBSI             | Catheter-related bloodstream infection                       |
| CRE               | Carbapenem-resistant Enterobacteriaceae                      |
| CRRT              | Continuous renal replacement therapy                         |
| CVC               | Central venous catheter                                      |
| CVC-BSI           | Central venous catheter-related bloodstream infection        |
| ED                | Emergency department                                         |
| ENT               | Otorhinolaryngology                                          |
| ESBL              | Extended spectrum beta-lactamases                            |
| HD                | Haemodialysis                                                |
| HDU               | High dependency unit                                         |
| Hosp              | Hospital                                                     |
| Hrs               | Hours                                                        |
| ICU               | Intensive care unit                                          |
| МОН               | Ministry of Health                                           |
| MRIC              | Malaysian Registry of Intensive Care                         |
| MRO               | Multi-drug resistant organism                                |
| MRSA              | Methicillin-resistant Staphylococcus aureus                  |
| MSSA              | Methicillin-sensitive Staphylococcus aureus                  |
| NIV               | Non-invasive ventilation                                     |
| NHSN              | National Healthcare Safety Network                           |
| No./n             | Number                                                       |
| O&G               | Obstetrics & Gynaecology                                     |
| PaCO <sub>2</sub> | Partial pressure of arterial carbon dioxide                  |
| PaO <sub>2</sub>  | Partial pressure of arterial oxygen                          |
| Refer.            | Referred                                                     |
| SAPS II           | Simplified Acute Physiologic Scoring System (Version II)     |
| SD                | Standard deviation                                           |
| SIRS              | Systemic inflammatory response syndrome                      |
| SMR               | Standardised mortality ratio                                 |
| SN<br>SOFA        | Staff nurse                                                  |
| SOFA              | Sequential Organ Failure Assessment<br>Sister                |
| SPSS              | Statistical Package for Social Sciences                      |
| VAP               | Ventilator-associated pneumonia                              |
| VCB               | Ventilator care bundle                                       |
| VRSA              | Vancomycin-resistant Staphylococcus aureus                   |
| Yrs               | Years                                                        |
|                   |                                                              |

#### LIST OF TABLES

| Table 1  | No. of ICU beds and ICU bed occupancy rate, by MOH hospitals 2011 - 2015                                                                                       |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 2  | ICU admissions, by individual hospital 2011 – 2015.                                                                                                            |
| Table 3  | Reporting rates, by individual hospital 2011 – 2015.                                                                                                           |
| Table 4  | Intensive care referrals and refusal of admission, by individual hospital 2011 – 2015                                                                          |
| Table 5  | Gender 2011 – 2015                                                                                                                                             |
| Table 6  | Mean age 2011 – 2015                                                                                                                                           |
| Table 7  | Ethnic groups 2015                                                                                                                                             |
| Table 8  | Length of ICU stay, by individual hospital 2011 – 2015                                                                                                         |
| Table 9  | Length of hospital stay, by individual hospital 2011 – 2015                                                                                                    |
| Table 10 | Referring units, by category of ICU 2015                                                                                                                       |
| Table 11 | Category of patients, by category of ICU 2015                                                                                                                  |
| Table 12 | Category of patients in MOH hospitals 2011 - 2015                                                                                                              |
| Table 13 | Location before ICU admission, by category of ICU 2015                                                                                                         |
| Table 14 | Location before ICU admission in MOH hospitals 2011 – 2015                                                                                                     |
| Table 15 | Main organ failure on ICU admission, by category of ICU 2015                                                                                                   |
| Table 16 | Number of organ failure(s) on ICU admission, by category of ICU 2015                                                                                           |
| Table 17 | Ten most common diagnoses leading to ICU admission 2015                                                                                                        |
| Table 18 | Ten most common diagnoses leading to ICU admission using APACHE II diagnostic category 2015                                                                    |
| Table 19 | Severe sepsis, ARDS and AKI within 24 hours of ICU admission 2015                                                                                              |
| Table 20 | Severe sepsis, ARDS and AKI within 24 hours of ICU admission, by individual hospital 2013 - 2015.                                                              |
| Table 21 | SAPS II score, by individual hospital 2011 – 2015                                                                                                              |
| Table 22 | SOFA score, by individual hospital 2011 – 2015                                                                                                                 |
| Table 23 | Invasive ventilation, non-invasive ventilation and reintubation, by category of ICU 2015                                                                       |
| Table 24 | Duration of invasive ventilation, by individual hospital 2011 – 2015                                                                                           |
| Table 25 | Renal replacement therapy and modalities of therapy, by category of ICU 2015                                                                                   |
| Table 26 | Tracheostomy, by category of ICU 2015.                                                                                                                         |
| Table 27 | Tracheotomy, by individual hospital 2015                                                                                                                       |
| Table 28 | Total number of tracheostomies and % percutaneous trachestomies, by individual hospital 2011 -2015                                                             |
| Table 29 | Withdrawal /withholding of therapy, by individual hospital 2011 – 2015                                                                                         |
| Table 30 | Incidence of Ventilator-associated pneumonia, by individual hospital 2010 – 2015                                                                               |
| Table 30 | Onset of VAP from initiation of invasive ventilation, by individual hospital 2010 – 2015                                                                       |
| Table 31 | Bacteriological cultures in VAP, by category of ICU 2015                                                                                                       |
| Table 32 | Bacteriological cultures in VAP 2009 – 2015.                                                                                                                   |
| Table 33 | Extra length of mechanical ventilation, ICU stay and crude in-hospital mortality in patients                                                                   |
| Table 34 | with VAP 2013-2015                                                                                                                                             |
| Table 35 | Unplanned extubation, by individual hospital 2011 – 2015                                                                                                       |
| Table 36 | Pressure ulcer, by individual hospital 2011 - 2015                                                                                                             |
| Table 37 | ICU outcome, by category of ICU 2015                                                                                                                           |
| Table 38 | Hospital outcome, by category of ICU 2015                                                                                                                      |
| Table 39 | Crude in-ICU and in-hospital mortality rates, by individual hospital 2011 – 2015                                                                               |
| Table 40 | Ten most common diagnoses leading to ICU admission in MOH hospitals and observed in-hospital mortality 2010 - 2015.                                            |
| Table 41 | Severe sepsis, ARDS and AKI within 24hrs of ICU admission and observed in-hospital mortality 2012–2015.                                                        |
| Table 42 | Standardised mortality ratio, by individual hospital 2011 - 2015                                                                                               |
| Table 43 | Ventilator care bundle compliance, by individual hospital 2011 – 2015                                                                                          |
| Table 44 | Ventilator Utilisation Ratio, Ventilator Care Bundle Compliance and Incidence of<br>Ventilator–associated Pneumonia, by individual hospital 2015               |
| Table 45 | Catheter utilisation ratio, central venous catheter care bundle compliance and incidence of central venous catheter- related bloodstream infection 2013 - 2015 |
| Table 46 | Bacteriological cultures in CVC-BSI 2013-2015                                                                                                                  |
| Table 47 | General comparison for dengue infection MOH ICUs 2010 - 2015                                                                                                   |
| Table 48 | Dengue infection by individual hospital and crude all cause in-hospital mortality 2011 – 2015                                                                  |

#### LIST OF FIGURES

|           |                                                                                                                    | Page |
|-----------|--------------------------------------------------------------------------------------------------------------------|------|
| Figure 1  | ICU admissions 2003 – 2015                                                                                         | 25   |
| Figure 2  | ICU admissions, by participating centres 2015                                                                      | 26   |
| Figure 3  | Reporting rates by individual hospitals 2015                                                                       | 29   |
| Figure 4  | Age groups 2015                                                                                                    | 33   |
| Figure 5  | Ethnic groups 2015                                                                                                 | 34   |
| Figure 6  | Referring units, by category of ICU 2015                                                                           | 40   |
| Figure 7  | Category of patients, by category of ICU 2015                                                                      | 41   |
| Figure 8  | Category of patients, MOH hospitals 2004 – 2015                                                                    | 41   |
| Figure 9  | Location before ICU admission, by category of ICU 2015                                                             | 42   |
| Figure 10 | Location before ICU admission in MOH hospitals 2004 - 2015                                                         | 43   |
| Figure 11 | Main organ failure on ICU admission, by category of ICU 2015                                                       | 44   |
| Figure 12 | Number of organ failure(s) on ICU admission, by category of ICU 2015                                               | 45   |
| Figure 13 | Ten most common diagnoses leading to ICU admission in MOH hospitals 2015                                           | 47   |
| Figure 14 | Invasive ventilation, by category of ICU 2015                                                                      | 58   |
| Figure 15 | Non-invasive ventilation, by category of ICU 2015                                                                  | 59   |
| Figure 16 | Non-invasive ventilation, MOH hospitals 2005 – 2015                                                                | 59   |
| Figure 17 | Reintubation by category of ICU 2015                                                                               | 60   |
| Figure 18 | Reintubation, MOH hospitals 2004 – 2015                                                                            | 60   |
| Figure 19 | Renal replacement therapy by category of ICU 2015                                                                  | 63   |
| Figure 20 | Modalities of renal replacement therapy, by category of ICU 2015                                                   | 63   |
| Figure 21 | Techniques of tracheostomy, by category of ICU 2015                                                                | 64   |
| Figure 22 | Ventilator associated pneumonia 2004 - 2015                                                                        | 73   |
| Figure 23 | Ventilator associated pneumonia, by individual hospital 2015                                                       | 74   |
| Figure 24 | Bacteriological cultures in VAP, by category of ICU 2015                                                           | 77   |
| Figure 25 | Common bacteriological cultures in VAP 2008 - 2015                                                                 | 78   |
| Figure 26 | Unplanned extubation, by individual hospital 2015                                                                  | 82   |
| Figure 27 | Pressure ulcers, by individual hospital 2015                                                                       | 85   |
| Figure 28 | Crude in-ICU and in-hospital mortality rates, by individual hospital 2015                                          | 90   |
| Figure 29 | Ventilator care bundle compliance and VAP 2007 – 2015                                                              | 96   |
| Figure 30 | Catheter utilisation ratio and incidence of central venous catheter-related bloodstream infection by hospital 2015 | 101  |
| Figure 31 | Compliance to Early Mobility in ICU protocol by hospital 2015                                                      | 105  |
| Figure 32 | Compliance to SSKIN Care Bundle by hospital 2015                                                                   | 107  |

#### INTRODUCTION

The National Audit on Adult Intensive Care Units (NAICU) was established in 2002 as a quality improvement initiative to systematically review the intensive care practices in Malaysia and where possible, to introduce remedial measures to improve outcome. To date, this audit has published twelve yearly reports and introduced several quality measures such as ventilator care bundle, central venous catheter care bundle, early mobility in ICU and the SSKIN bundle.

In 2009, the NAICU was renamed the Malaysian Registry of Intensive Care (MRIC). This report is the eighth for MRIC, but thirteenth in the series.

#### The objectives of this registry are to:

- 1. Establish a database of patients admitted to the adult ICUs
- 2. Review the clinical practices of intensive care
- 3. Determine clinical outcome
- 4. Determine the resources and delivery of intensive care service
- 5. Evaluate the impact of quality improvement measures on patient care
- 6. Provide comparisons of performance of participating centres against national and international standards
- 7. Conduct healthcare research related to intensive care

In 2002, 14 state hospitals were first recruited into the audit. The number of centres increased to 22 in 2005. In 2006, 9 more centres were added to the list of participating sites, including one private hospital in Selangor. In 2010, 6 more centres were added to the list of 31 participating hospitals. In 2012, the total number of participating centres expanded to 51 with 49 MOH hospitals, 1 private hospital and 1 university hospital. In 2015, the private hospital withdrew from the registry.

This report describes the intensive care practices and outcomes in 49 ICUs in MOH and 1 ICU in a university hospital.

#### Data Collection and Verification

Data were collected prospectively by trained nurses (source data providers) and specialists (site investigators) based on a written protocol. Data was initially collected on a standard ecase report form for each patient. Since 1<sup>st</sup> January 2010, data were entered directly in a central depository via a web-based programme by individual centres.

All participating centres were to ensure "accuracy and completeness" of their individual databases.

Merged data were 'cleaned' and verified before being analysed using SPSS version 20.0.0. This report is based on all admissions into the 50 participating ICUs from 1<sup>st</sup> January to 31<sup>st</sup> December 2015. The total number of admissions in 2015 was 41,065 out of which 1470 (3.6%) were readmissions. For patients with multiple ICU admissions, only the first admission was included in the analysis. Hence, analysis was done on 39,595 admissions.

Due to missing and inconsistent data, the sum total of some variables shown in the tables may not add up to the actual number of admissions.

#### **Data Limitations**

Limitations to the registry data were mainly related to data collection and data entry. Some of the participating ICUs experienced rapid turnover of their site investigators and source data providers resulting in under-reporting and data inconsistencies. Data from several centres with low reporting rates were excluded from some of the analysis of the variables.

#### Format of Report

The format of this report follows the patient's journey in four sections: demographics, interventions, complications and outcomes. Information is reported on a total of 39,595 ICU admissions.

In this report, information was provided for individual centres. Wherever appropriate, comparisons were made between three categories of hospitals based on the number of ICU admissions. MOH hospitals were divided into three categories: centres with 1000 admissions and more, centres with 500 to 999 admissions and those with less than 500 admissions.

Where relevant, trends of certain variables over the years were reported.

This report also includes ICU admissions for dengue infection, central venous care bundle compliance, central venous catheter-related bloodstream infections, early mobility in ICU compliance and compliance to the SSKIN bundle in MOH participating centres.

## **SECTION A:**

## **GENERAL INFORMATION**

- 1. Number of ICU beds
- 2. Bed occupancy rates
- 3. ICU admissions
- 4. Reporting rates
- 5. Intensive care referrals

|          | Number of                                    |       |       |       |       |       |  |
|----------|----------------------------------------------|-------|-------|-------|-------|-------|--|
| Hospital | functional<br>ICU beds (as<br>of 31-12-2015) | 2011  | 2012  | 2013  | 2014  | 2015  |  |
| AS       | 24                                           | 87.0  | 96.7  | 93.3  | 88.8  | 86.1  |  |
| PP       | 23                                           | 89.9  | 88.7  | 90.9  | 90.5  | 94.0  |  |
| IPH      | 26                                           | 107.0 | 106.0 | 104.0 | 109.0 | 107.0 |  |
| KL       | 43                                           | 107.5 | 111.7 | 110.6 | 114.1 | 112.7 |  |
| SLG      | 25                                           | 111.4 | 99.8  | 101.8 | 92.7  | 99.2  |  |
| KLG      | 32                                           | 87.8  | 108.3 | 105.9 | 112.9 | 110.8 |  |
| SBN      | 8                                            | 118.4 | 114.6 | 108.3 | 111.7 | 112.5 |  |
| MLK      | 22                                           | 106.0 | 107.9 | 97.5  | 90.7  | 91.6  |  |
| JB       | 32                                           | 106.2 | 105.6 | 109.4 | 109.0 | 107.9 |  |
| KTN      | 21                                           | 105.2 | 106.4 | 106.5 | 110.3 | 127.7 |  |
| KT       | 21                                           | 102.0 | 103.6 | 104.6 | 94.2  | 105.2 |  |
| KB       | 21                                           | 80.8  | 80.0  | 96.2  | 109.2 | 92.2  |  |
| КСН      | 15                                           | 116.6 | 125.9 | 101.0 | 107.6 | 104.5 |  |
| КК       | 23                                           | 101.7 | 93.4  | 95.9  | 90.9  | 98.6  |  |
| SP       | 16                                           | 84.6  | 84.9  | 92.5  | 82.7  | 80.3  |  |
| РЈҮ      | 11                                           | 78.2  | 75.2  | 71.2  | 84.7  | 94.7  |  |
| MUR      | 8                                            | 82.4  | 97.5  | 97.5  | 94.2  | 90.1  |  |
| TI       | 4                                            | 101.3 | 123.8 | 105.2 | 114.0 | 112.0 |  |
| TPG      | 20                                           | 103.2 | 92.7  | 84.7  | 81.4  | 102.0 |  |
| SJ       | 10                                           | 89.6  | 99.1  | 80.2  | 81.3  | 101.0 |  |
| KJG      | 6                                            | 78.9  | 77.2  | 77.1  | 84.2  | 82.5  |  |
| KGR      | 5                                            | 63.3  | 77.3  | 78.1  | 80.8  | 94.5  |  |
| TML      | 10                                           | 104.0 | 113.0 | 127.0 | 88.8  | 82.1  |  |
| KP       | 8                                            | 68.5  | 61.8  | 72.4  | 91.7  | 80.9  |  |
| SMJ      | 8                                            | 82.4  | 92.7  | 85.5  | 92.4  | 83.5  |  |
| BP       | 7                                            | 69.0  | 87.0  | 79.6  | 74.8  | 72.0  |  |
| TW       | 7                                            | 60.6  | 80.7  | 70.0  | 78.2  | 61.6  |  |
| MRI      | 8                                            | 72.7  | 76.1  | 79.6  | 101.3 | 95.0  |  |
| KLM      | 7                                            | 98.9  | 100.5 | 95.4  | 100.2 | 102.2 |  |
| SDG      | 13                                           | 88.2  | 50.4  | 84.4  | 85.7  | 91.6  |  |
| SB       | 17                                           | 99.2  | 60    | 120.5 | 144.0 | 151.7 |  |
| DKS      | 18                                           | 87.9  | 87.9  | 99.1  | 82.2  | 79.2  |  |
| SI       | 22                                           | 87.3  | 86.2  | 90.2  | 85.1  | 90.3  |  |
| SBL      | 38                                           | 108.1 | 94.6  | 94.0  | 115.7 | 94.6  |  |
| AMP      | 12                                           | 85.5  | 45.7  | 82.9  | 74.4  | 90.4  |  |
| LIK      | 9                                            | 76.7  | 76.9  | 106.0 | 103.4 | 72.6  |  |
| LKW      | 4                                            | -     | 67.0  | 67.4  | 59.1  | 69.0  |  |
| BM       | 7                                            | -     | 65.6  | 106.8 | 100.9 | 110.5 |  |

## Table 1 :No. of ICU beds and bed occupancy rate, by MOH hospitals 2011-2015

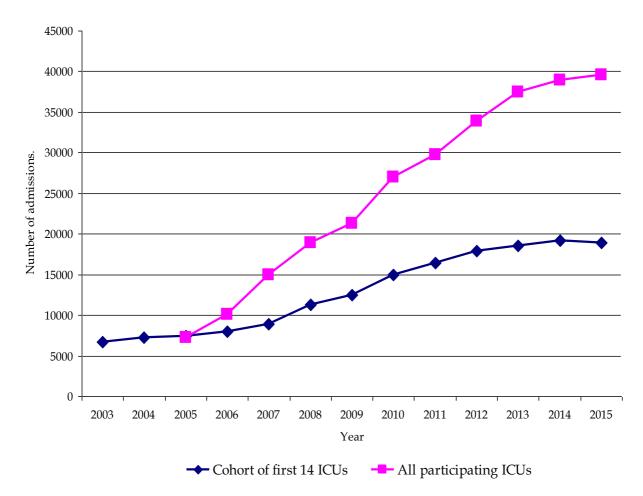
| Total<br>Median | 660 | - 88.6 | - 86.2 | -<br>90.2 | -<br>90.5 | 91.6  |
|-----------------|-----|--------|--------|-----------|-----------|-------|
| LD              | 4   | -      | 104.2  | 101.2     | 103.1     | 88.6  |
| BIN             | 5   | -      | 88.3   | 63.2      | 59.7      | 57.0  |
| KEN             | 4   | -      | 90.4   | 78.0      | 80.3      | 70.0  |
| LAB             | 5   | -      | 30.7   | 41.2      | 45.5      | 48.5  |
| KLP             | 3   | -      | 21.8   | 53.0      | 54.2      | 82.6  |
| KEM             | 2   | -      | 59.6   | 50.9      | -         | -     |
| ТМ              | 5   | -      | 68.7   | 74.0      | 113.2     | 151.4 |
| SGT             | 4   | -      | 58.1   | 89.7      | 75.0      | 70.8  |
| KKR             | 6   | -      | 69.8   | 85.2      | 87.1      | 86.0  |
| PD              | 4   | -      | 85.5   | 65.6      | 86.0      | 89.8  |
| SLR             | 7   | -      | 76.0   | 71.0      | 79.3      | 76.0  |

The total number of ICU beds in the 49 MOH hospitals as of 31<sup>st</sup> December 2015 was 660 with a median bed occupancy rate (BOR) of 91.6%. There was a 3.6% increase (23 beds) in the number of ICU beds from the previous year.

The BOR was calculated based on throughput census and was reported to the head of the anaesthesia and intensive care services. There was a wide variation in the BOR across the centers. Seven hospitals, IPH, KL, SBN, JB, KTN, KCH and TI continuously had their bed occupancy rate more than 100% for the past 5 years while LAB had a consistently low BOR less than 50%. SB and TM had bed occupancy rates of more than 150% in 2015. KEM did not report their BOR for the past two years.

Bed occupancy is used as a measure to indicate the activity of a unit in terms of its maximum capacity. There are several methods of calculating bed occupancy and the impact of these methodological differences will tend to be greatest in specialised areas such as intensive care units, where the duration of admission is generally short but highly variable, and throughput is high. If it is measured in whole numbers of days, intensive care units can show an occupancy of greater than 100%, as more than one patient may use a particular bed on a given day.

It is believed that some MOH ICUs may still be using the "midnight count" method to calculate BOR and hence BOR maybe lower than if the throughput method was used.


#### Table 2:

ICU admissions, by individual hospital 2011 - 2015

|          | 2011       | 2012       | 2013       | 2014       | 2015       |
|----------|------------|------------|------------|------------|------------|
| Hospital | n (%)      | n (%)      | n(%)       | n (%)      | n (%)      |
| AS       | 1212 (4.1) | 1201 (3.5) | 1347 (3.6) | 1331 (3.4) | 1363 (3.4) |
| PP       | 1198 (4.0) | 1287 (3.8) | 1121 (3.0) | 1134 (2.9) | 1172 (3.0) |
| IPH      | 1140 (3.8) | 926 (2.7)  | 1203 (3.2) | 1217 (3.1) | 1328 (3.4) |
| KL       | 1842 (6.2) | 1971 (5.8) | 1905 (5.1) | 2144 (5.5) | 1985 (5.0) |
| SLG      | 1141 (3.8) | 1289 (3.8) | 1507 (4.0) | 1426 (3.7) | 1392 (3.5) |
| KLG      | 1608 (5.4) | 2136 (6.3) | 2065 (5.5) | 2281 (5.9) | 2184 (5.5) |
| SBN      | 554 (1.9)  | 537 (1.6)  | 471 (1.3)  | 541 (1.4)  | 542 (1.4)  |
| MLK      | 1593 (5.3) | 1694 (5.0) | 1673 (4.5) | 1432 (3.7) | 1430 (3.6) |
| JB       | 1685 (5.7) | 1752 (5.2) | 1931 (5.2) | 1687 (4.3) | 1719 (4.3) |
| KTN      | 612 (2.1)  | 641 (1.9)  | 837 92.2)  | 1062 (2.7) | 1043 (2.6) |
| KT       | 1207 (4.1) | 1363 (4.0) | 1180 (3.2) | 1172 (3.0) | 1398 (3.5) |
| KB       | 1125 (3.8) | 1286 (3.8) | 1337 (3.6) | 1607 (4.1) | 1267 (3.2) |
| КСН      | 643 (2.2)  | 854 (2.5)  | 950 (2.5)  | 1140 (2.9) | 1143 (2.9) |
| KK       | 843 (2.8)  | 954 (2.8)  | 1022 (2.7) | 987 (2.5)  | 925 (2.3)  |
| SP       | 270 (0.9)  | 159 (0.5)  | 583 (1.6)  | 953 (2.4)  | 1015 (2.6) |
| РЈҮ      | 537 (1.8)  | 574 (1.7)  | 606 (1.6)  | 654 (1.7)  | 764 (1.9)  |
| MUR      | 473 (1.6)  | 636 (1.9)  | 675 (1.8)  | 600 (1.5)  | 611 (1.5)  |
| TI       | 308 (1.0)  | 384 (1.1)  | 401 (1.1)  | 406 (1.0)  | 424 (1.1)  |
| TPG      | 860 (2.9)  | 1203 (3.5) | 1348 (3.6) | 1182 (3.0) | 1126 (2.8) |
| SJ       | 579 (1.9)  | 644 (1.9)  | 413 (1.1)  | 409 (1.1)  | 475 (1.2)  |
| KJG      | 341 (1.1)  | 371 (1.1)  | 321 (0.9)  | 284 (0.7)  | 464 (1.2)  |
| KGR      | 298 (1.0)  | 350 (1.1)  | 322 (0.9)  | 341 (0.9)  | 355 (0.9)  |
| SJMC     | 2018 (6.8) | 1467 (4.3) | 1335 (3.6) | 870 (2.2)  | -          |
| TML      | 543 (1.8)  | 436 (1.3)  | 599 (1.6)  | 837 (2.2)  | 828 (2.1)  |
| KP       | 359 (1.2)  | 334 (1.0)  | 394 (1.1)  | 512 (1.3)  | 545 (1.4)  |
| SMJ      | 380 (1.3)  | 403 (1.2)  | 376 (1.0)  | 432 (1.1)  | 441 (1.1)  |
| BP       | 454 (1.5)  | 415 (1.2)  | 459 (1.2)  | 459 (1.2)  | 546 (1.4)  |
| TW       | 274 (0.9)  | 433 (1.3)  | 449 (1.2)  | 498 (1.3)  | 444 (1.1)  |
| MRI      | 385 (1.3)  | 478 (1.4)  | 481 (1.3)  | 428 (1.1)  | 377 (1.0)  |
| KLM      | 498 (1.7)  | 601 (1.8)  | 561 (1.5)  | 555 (1.4)  | 526 (1.3)  |
| SDG      | 883 (3.0)  | 875 (2.6)  | 851 (2.3)  | 835 (2.1)  | 756 (1.9)  |
| SB       | 569 (1.9)  | 490 (1.4)  | 506 (1.4)  | 431 (1.1)  | 1275 (3.2) |
| DKS      | 526 (1.8)  | 526 (1.6)  | 964 (2.6)  | 950 (2.4)  | 923 (2.3)  |
| SI       | 647 (2.2)  | 806 (2.4)  | 970 (2.6)  | 1131 (2.9) | 1473 (3.7) |
| SBL      | 1260 (4.2) | 1583 (4.7) | 1922 (5.1) | 2284 (5.9) | 2313 (5.8) |
| AMP      | 553 (1.9)  | 572 (1.7)  | 566 (1.5)  | 634 (1.6)  | 671 (1.7)  |
| LIK      | 376 (1.3)  | 270 (0.8)  | 517 (1.4)  | 353 (0.9)  | 154 (0.4)  |
| UMMC     | -          | 474 (1.4)  | 883 (2.4)  | 1344 (3.5) | 1294 (3.3) |

| LKW   | -           | 157 (0.5)   | 180 (0.5)   | 165 (0.4)   | 195 (0.5)   |
|-------|-------------|-------------|-------------|-------------|-------------|
| BM    | -           | 38 (0.1)    | 158 (0.4)   | 141 (0.4)   | 218 (0.6)   |
| SLR   | -           | 154 (0.5)   | 225 (0.6)   | 223 (0.6)   | 201 (0.5)   |
| PD    | -           | 204 (0.6)   | 245 (0.7)   | 265 (0.7)   | 230 (0.6)   |
| KKR   | -           | 149 (0.4)   | 240 (0.6)   | 260 (0.7)   | 391 (1.0)   |
| SGT   | -           | 127 (0.4)   | 159 (0.4)   | 150 (0.4)   | 290 (0.7)   |
| TM    | -           | 17 (0.1)    | 127 (0.3)   | 160 (0.4)   | 308 (0.8)   |
| KEM   | -           | 94 (0.3)    | 105 (0.3)   | 91 (0.2)    | 179 (0.5)   |
| KLP   | -           | 7 (0.0)     | 116 (0.3)   | 96 (0.2)    | 107 (0.3)   |
| LAB   | -           | 107 (0.3)   | 165 (0.4)   | 166 (0.4)   | 184 (0.5)   |
| KEN   | -           | 82 (0.2)    | 161 (0.4)   | 144 (0.4)   | 136 (0.3)   |
| BIN   | -           | 213 (0.6)   | 260 (0.7)   | 283 (0.7)   | 315 (0.8)   |
| LD    | -           | 168 (0.5)   | 244 (0.7)   | 217 (0.6)   | 150 (0.4)   |
| Total | 29794 (100) | 33892 (100) | 37436 (100) | 38904 (100) | 39595 (100) |





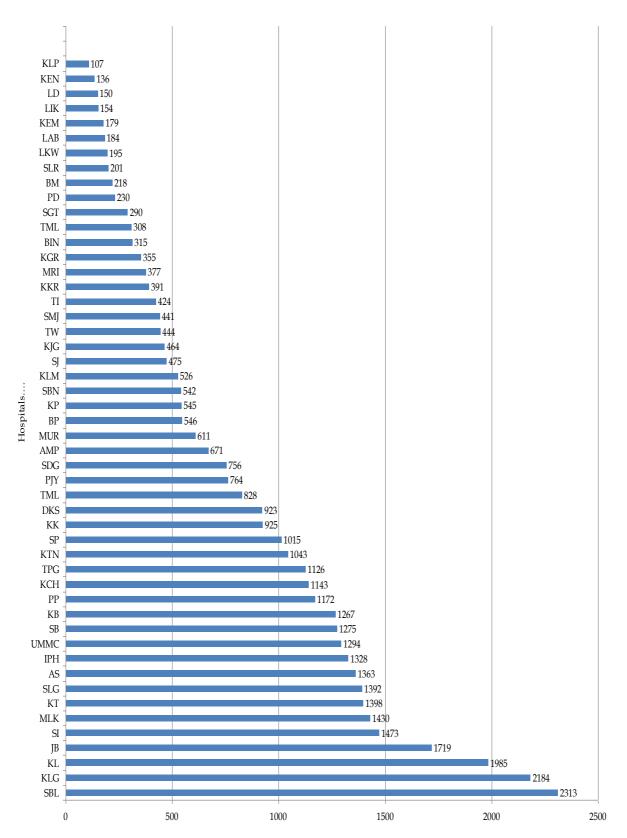



Figure 2: ICU admissions, by participating centres 2015

Number of ICU Admission

The number of admissions had increased over the years in the MOH hospitals. There was an increase of 33% over the past five years from 2011 to 2015. This was attributed to the increase in the number of participating centres, increase in the number of ICU beds in the existing centres and an increase in ICU admissions.

For the initial cohort of 14 hospitals recruited in 2002, the number of admissions increased from 16,403 to 18,891 (an increase of 15%) over the last 5 years. There was an increase of 30% in the number of ICU beds from 259 to 336 over the same period of time for the same cohort.

Readmission within 48 hours is commonly used as an indicator of intensive care patient management, as it might reflect premature ICU discharge or substandard ward care. Although readmission is associated with high mortality, it is unclear whether it reflects substandard practices within a hospital. Low readmission rate may be due to inability to readmit patients due to unavailability of ICU beds.

The readmission rate within the first 48 hours of ICU discharge for the 49 MOH centres was 1.5% in 2015. This rate has varied from 1.3% to 2.1% over the past five years. This is one of the intensive care unit key performance indicators and the standard is set at less than 3%.

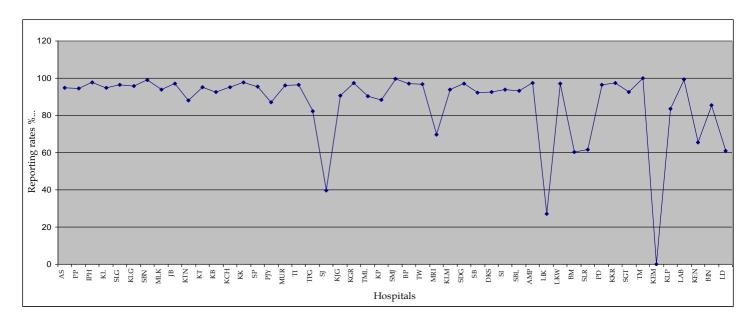
In a retrospective study done from 2001 to 2007, in 106 ICUs in United States of America, approximately 2% of ICU patients discharged to the ward were readmitted within 48 hours [1].

The Australian Council on Healthcare Standards reported a readmission rate of 1.68% from 2003 to 2010 [2].

| Hospital | 2011  | 2012                        | 2013   | 2014                        | 2015                        |
|----------|-------|-----------------------------|--------|-----------------------------|-----------------------------|
| 10       | %     | <sup>0</sup> / <sub>0</sub> | 0/0    | <sup>0</sup> / <sub>0</sub> | <sup>0</sup> / <sub>0</sub> |
| AS       | 98.2  | 93.1                        | 99.6   | 91.5                        | 94.9                        |
| PP       | 90.1  | 96.2                        | 92.2   | 94.1                        | 94.4                        |
| IPH      | 99.2  | 97.5                        | 95.9   | 91.0                        | 97.7                        |
| KL       | 98.7  | 98.5                        | 95.0   | 94.7                        | 95.0                        |
| SLG      | 95.0  | 97.6                        | 95.3   | 92.8                        | 96.5                        |
| KLG      | 86.0  | 97.3                        | 97.7   | 95.9                        | 95.9                        |
| SBN      | 99.5  | 99.3                        | 97.3   | 96.8                        | 99.1                        |
| MLK      | 99.5  | 98.8                        | 95.2   | 94.8                        | 93.9                        |
| JB       | 99.8  | 97.2                        | 95.7   | 95.4                        | 97.2                        |
| KTN      | 99.0  | 97.2                        | 124.4* | 88.4                        | 88.1                        |
| KT       | 99.8  | 99.1                        | 95.0   | 90.4                        | 95.2                        |
| KB       | 94.4  | 98.7                        | 83.0   | 100.7*                      | 92.7                        |
| КСН      | 94.3  | 95.3                        | 89.6   | 93.2                        | 95.3                        |
| KK       | 95.4  | 94.9                        | 95.2   | 95.3                        | 97.9                        |
| SP       | 53.1  | 30.8                        | 106.0* | 92.7                        | 95.4                        |
| РЈҮ      | 99.1  | 98.0                        | 92.9   | 86.6                        | 87.2                        |
| MUR      | 97.4  | 94.6                        | 98.0   | 92.0                        | 96.2                        |
| TI       | 98.4  | 91.2                        | 90.3   | 94.0                        | 96.4                        |
| TPG      | 94.0  | 99.3                        | 95.5   | 94.3                        | 82.1                        |
| SJ       | 98.5  | 98.3                        | 85.7   | 73.4                        | 39.8                        |
| KJG      | 95.5  | 99.7                        | 75.2   | 57.7                        | 90.6                        |
| KGR      | 98.1  | 98.6                        | 94.2   | 95.5                        | 97.5                        |
| TML      | 81.4  | 62.6                        | 68.3   | 91.0                        | 90.3                        |
| KP       | 100.0 | 66.4                        | 51.0   | 94.6                        | 88.5                        |
| SMJ      | 100.0 | 99.5                        | 97.9   | 94.9                        | 99.8                        |
| BP       | 98.5  | 97.9                        | 106.3* | 97.2                        | 97.0                        |
| TW       | 91.7  | 98.6                        | 95.5   | 94.0                        | 96.7                        |
| MRI      | 88.5  | 99.2                        | 97.6   | 78.0                        | 69.8                        |
| KLM      | 98.9  | 98.5                        | 94.1   | 92.2                        | 93.8                        |
| SDG      | 94.9  | 90.5                        | 108.4* | 97.0                        | 97.0                        |
| SB       | 73.1  | 70.0                        | 46.7   | 25.7                        | 92.2                        |
| DKS      | 99.6  | 95.5                        | 92.7   | 90.3                        | 92.6                        |
| SI       | 86.3  | 94.6                        | 97.3   | 95.0                        | 93.8                        |
| SBL      | 100.0 | 90.7                        | 82.0   | 89.6                        | 93.1                        |
| AMP      | 85.2  | 100.0                       | 97.1   | 119.6*                      | 97.4                        |
| LIK      | 60.9  | 57.4                        | 80.7   | 59.9                        | 27.0                        |
| LKW      | -     | 69.8                        | 87.4   | 82.5                        | 97.0                        |
| BM       | -     | 11.3                        | 39.4   | 34.7                        | 60.4                        |
| SLR      | -     | 42.5                        | 67.6   | 67.8                        | 61.7                        |

## Table 3 :Reporting rates, by individual hospital 2011 - 2015

| PD  | - | 84.0 | 93.2   | 92.7   | 96.6  |
|-----|---|------|--------|--------|-------|
| KKR | - | 87.1 | 94.9   | 102.4* | 97.5  |
| SGT | - | 41.2 | 50.5   | 20.1   | 92.7  |
| TM  | - | 22.4 | 104.1* | 32.4   | 100.0 |
| KEM | - | 75.2 | 82.0   | 74.6   | -     |
| KLP | - | 36.8 | 87.9   | 43.2   | 83.6  |
| LAB | - | 96.4 | 91.2   | 89.2   | 99.5  |
| KEN | - | 16.4 | 59.2   | 56.5   | 65.4  |
| BIN | - | 75.5 | 80.5   | 84.0   | 85.6  |
| LD  | - | 67.2 | 92.4   | 83.5   | 61.0  |


\* These hospitals had reporting rates more than 100%.

The reporting rate is calculated by comparing the number of ICU admissions reported to the MRIC and to the national census, collected by the Head of Anaesthesia service. The total number reported to the MRIC should be equal or slightly less than that of the national census, as patients who were still in hospital on 31<sup>st</sup> January 2015 were excluded in the analysis.

The following hospitals have consistently contributed high reporting rates of over 90% over the last 5 years: AS, PP, IPH, KL, SLG, SBN, MLK, JB, KT, KB, KCH, KK, MUR, TI, KGR, SMJ, BP, TW, KLM, SDG, PD, KKR, LAB, DKS, SI and AMP.

The following hospitals had low reporting rates of less than 70% in 2015: LIK (27%), SJ (40%), BM (60%), LD (61%), SLR (62%), KEN (65%) and MRI (69.8%).

KEM did not report to the national census-hence reporting rate could not be obtained.



#### Figure 3: Reporting rates by individual hospitals 2015

#### 2011 2014 2012 2013 2015 % No. % No. % No. % No. % No. Hosp refer. denied refer. denied refer. denied refer. denied refer. denied adm. adm. adm. adm. adm. \* \* AS \* \* \* PP 942 70.2 1329 1365 1145 67.8 73.6 66.1 1463 67.0 IPH 1525 1834 1639 70.2 1852 66.7 63.4 62.2 1781 65.8 KL 1971 2364 2515 3393 32.8 30.4 30.1 30.0 3294 31.5 SLG 448 27.2 1173 24.2 1537 35.3 1449 28.2 1498 35.7 KLG 2264 33.1 2458 21.2 2576 23.1 31.40 21.2 2882 20.9 SBN 2125 60.8 1929 1640 51.6 853 847 59.3 56.0 49.1 MLK 919 55.2 993 61.2 1285 73.9 2451 43.0 2444 50.2 JB 2069 39.8 2205 28.8 33.7 2495 40.9 2634 1333 36.5 KTN 791 42.4 455 39.6 608 40.0 241 29.5 224 39.7 \* \* ΚT 150 18.0 544 26.3 183 27.9 443 19.6 KB 1431 50.1 1417 41.5 1884 46.9 2817 46.8 2468 52.6 KCH 477 51.4 1132 57.8 1271 53.1 1474 52.7 1699 44.6 KK 1282 17.9 1340 16.0 13.0 1619 21.7 1364 1485 16.4 \* SP \* 254 74 \* 44.1 562 21.6 \* 46.1 \* \* \* \* \* \* PJY 36 5.6 0.6 486 MUR 903 34.3 1223 31.5 28.7 27.4 685 31.4 1368 1289 ΤI 54 40.7 170 42.9 156 49.1 440 49.3 585 60.3 TPG 958 0.5 1498 10.4 2004 12.4 1360 6.5 1657 12.4 592 SJ 625 31.2 34.1 813 41.7 657 28.9 489 32.9 \* \* KJG 67 19.4 488 22.1 145 37.9 52 28.9 KGR 201 20.4 390 397 12.3 405 12.8 16.7 15.1 260 TML 921 35.6 875 836 37.6 834 38.3 927 38.5 31.6 KP 7.3 9.7 412 412 587 21.8 684 14.0 780 14.0 SMJ 191 13.1 145 13.8 122 12.3 232 2.6 111 7.2 BP 454 2.6 372 2.2 458 3.7 443 1.1 529 0.6 TW \* 297 505 3.2 591 5.4 844 19.1 1026 21.5 MRI 81 132 335 22.4 13.1 15 33.3 18.5 4.6 61 KLM 509 2.9 710 5.2 699 10.7 730 6.6 825 20.9 SDG 712 14.2 506 22.9 1221 10.2 1525 12.0 1069 27.3 \* \* \* \* 22.7 SB 565 22.5 506 1522 30.2 DKS 10 50.0 214 33.6 81 26.0 246 20.3 388 29.4 SI 635 34.8 547 21.4 734 31.7 484 28.5 27.9 111 \* \* SBL 17.4 9.2 689 636 14.8 1607 1588 11.3 AMP 149 39.6 716 26.7 1333 29.5 1419 21.9 1185 31.5 \* \* \* \* \* \* \* \* \* LIK \* \* \* UMMC 657 57.5 955 41.8 55 34.6 --\* \* LKW 171 \* \* \* \* 0.6 --\* \* \* BM \* \* \* \* \* --

## Table 4 :Intensive care referrals and refusal of admission, by individual hospital<br/>2011 - 2015

| SLR   | -     | -    | 55    | 10.9 | 166   | 7.2  | 277   | 2.5  | 282   | 1.7  |
|-------|-------|------|-------|------|-------|------|-------|------|-------|------|
| PD    | -     | -    | 216   | 7.4  | 249   | 1.6  | 288   | 0.7  | 247   | 13.0 |
| KKR   | -     | -    | 49    | 24.5 | 105   | 27.6 | 263   | 36.5 | 242   | 23.1 |
| SGT   | -     | -    | *     | *    | *     | *    | *     | *    | *     | *    |
| ТМ    | -     | -    | *     | *    | 95    | 3.2  | 148   | 10.1 | 308   | 16.2 |
| KEM   | -     | -    | 60    | 1.7  | 119   | 12.6 | 122   | 11.5 | 401   | 27.4 |
| KLP   | -     | -    | *     | *    | 100   | 3.0  | 99    | 6.1  | 104   | 1.0  |
| LAB   | -     | -    | *     | *    | *     | *    | *     | *    | *     | *    |
| KEN   | -     | -    | 46    | 4.4  | *     | *    | *     | *    | *     | *    |
| BIN   | -     | -    | *     | *    | *     | *    | *     | *    | *     | *    |
| LD    | -     | -    | *     | *    | *     | *    | 67    | 43.3 | 252   | 34.9 |
| Total | 25321 | 34.2 | 31341 | 32.0 | 37962 | 29.4 | 39586 | 29.8 | 38809 | 31.7 |

\* Missing data

The reason for ICU refusal for the purpose of this registry was limited to the unavailability of ICU beds. In 2015, 31.7% of patients were denied ICU admission.

Over the past five years, the percentage of patients denied ICU admission has not change much despite the overall increase in the number of ICU beds in most MOH hospitals.

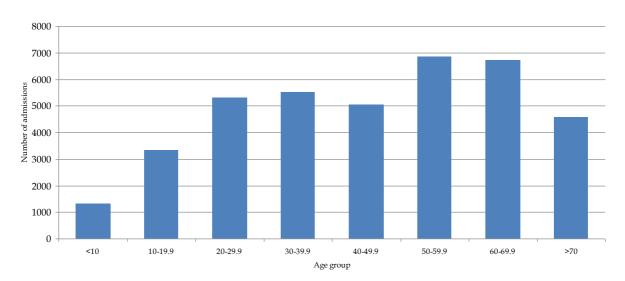
In an observational prospective study, the ICU refusal rates varied greatly across ICUs in 11 hospitals in France ranging from 7.1 to 63.1%, with reasons for refusal as being too well to benefit, too sick to benefit and unavailability of ICU beds [3].

## **SECTION B:**

## PATIENT CHARACTERISTICS

- 1. Gender
- 2. Age
- 3. Ethnic groups
- 4. Length of ICU stay
- 5. Length of hospital stay
- 6. Referring units
- 7. Category of patients
- 8. Location before ICU admission
- 9. Organ failures
- 10.Diagnosis leading to ICU admission
- 11.Severe sepsis, ARDS and AKI within 24hrs of ICU admission
- 12.SAPS II score
- 13.SOFA score

#### Table 5 : Gender 2011-2015

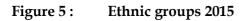

| Gender | 2011<br>n (%) | 2012<br>n (%) | 2013<br>n (%) | 2014<br>n (%) | 2015<br>n (%) |
|--------|---------------|---------------|---------------|---------------|---------------|
| Male   | 17788 (59.7)  | 20295 (60.0)  | 22331 (59.7)  | 22926 (59.0)  | 23382 (59.2)  |
| Female | 11968 (40.2)  | 13554 (40.0)  | 15048 (40.3)  | 15895 (41.0)  | 16138 (40.8)  |

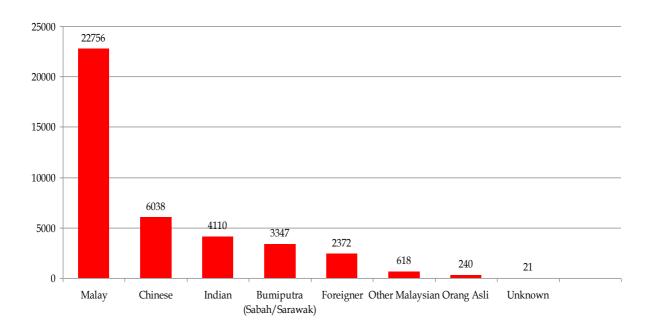
The ratio of male to female patients (3:2) has remained fairly constant over the past five years.

| Table 6 : | Mean age (years) 2011 – 2015 |
|-----------|------------------------------|
|-----------|------------------------------|

| Age                                    | 2011       | 2012            | 2013            | 2014               | 2015               |
|----------------------------------------|------------|-----------------|-----------------|--------------------|--------------------|
| All ages,<br>Mean <u>+</u> SD yrs      | 46.5± 20.7 | $46.6 \pm 20.7$ | $46.5 \pm 20.6$ | 45.9 <u>+</u> 20.6 | 45.9 <u>+</u> 20.2 |
| Age ≥ 18 years<br>Mean <u>+</u> SD yrs | 50.2± 18.0 | 50.3 ± 17.8     | 50.3 ± 17.7     | 49.7 <u>+</u> 17.8 | 49.5 <u>+</u> 17.5 |

The average age for all age groups was  $45.9 \pm 20.2$  years (median 47.8 years). For adult patients, with age exceeding 18 years, the average age was  $49.5 \pm 17.5$  years (median 51.0 years). The average age of patients admitted to ICUs has remained fairly similar over the last five years.





#### Figure 4 : Age groups 2015

Geriatric patients (age 65 years and above) and paediatric patients (age less than 12 years) accounted for 20.3% and 3.8% of total admissions respectively in 2015. This may be due to the fact that many of the major hospitals have separate paediatric ICUs, and they do not participate in the MRIC.

#### Table 7 :Ethnic groups 2015

| Ethnic group            | n      | 0/0  |
|-------------------------|--------|------|
| Malay                   | 22756  | 57.6 |
| Chinese                 | 6038   | 15.3 |
| Indian                  | 4110   | 10.4 |
| Bumiputra Sabah/Sarawak | 3347   | 8.4  |
| Foreigner               | 2372   | 6.0  |
| Other Malaysian         | 618    | 1.6  |
| Orang Asli              | 240    | 0.6  |
| Unknown                 | 21     | 0.1  |
| Total                   | 39,502 | 100  |





The distribution of patients admitted to ICU reflected the distribution of the ethnic groups in the general population in Malaysia. Foreigners contributed 6% to the overall ICU admissions.

|          | Mean (Median), days |           |           |           |           |  |  |  |  |  |
|----------|---------------------|-----------|-----------|-----------|-----------|--|--|--|--|--|
| Hospital | 2011                | 2012      | 2013      | 2014      | 2015      |  |  |  |  |  |
| AS       | 4.6 (2.8)           | 5.6 (3.1) | 4.9 (2.9) | 4.6 (2.8) | 4.5 (2.7) |  |  |  |  |  |
| PP       | 5.1 (2.5)           | 5.4 (2.6) | 5.9 (2.7) | 6.2 (2.9) | 6.1 (2.9) |  |  |  |  |  |
| IPH      | 5.3 (2.6)           | 5.5 (2.9) | 5.9 (3.0) | 6.1 (3.2) | 6.4 (3.3) |  |  |  |  |  |
| KL       | 4.7 (2.8)           | 5.1 (2.8) | 5.0 (2.7) | 4.6 (2.4) | 4.9 (2.5) |  |  |  |  |  |
| SLG      | 4.4 (2.4)           | 4.5 (2.6) | 4.2 (2.0) | 4.7 (2.5) | 5.1 (2.5) |  |  |  |  |  |
| KLG      | 3.6 (2.0)           | 4.1 (2.1) | 4.3 (1.9) | 4.0 (2.0) | 4.5 (2.2) |  |  |  |  |  |
| SBN      | 4.8 (2.7)           | 4.9 (2.7) | 5.9 (2.9) | 5.0 (2.7) | 5.0 (2.7) |  |  |  |  |  |
| MLK      | 4.0 (2.7)           | 4.1 (2.1) | 4.1 (2.1) | 4.8 (2.5) | 4.6 (2.6) |  |  |  |  |  |
| JB       | 5.2 (3.0)           | 5.2 (3.0) | 4.7 (2.8) | 5.4 (3.1) | 5.4 (3.3) |  |  |  |  |  |
| KTN      | 6.3 (3.4)           | 6.3 (3.6) | 5.6 (3.3) | 5.5 (2.8) | 6.1 (3.0) |  |  |  |  |  |
| KT       | 4.0 (2.3)           | 4.1 (2.2) | 4.6 (2.7) | 4.1 (2.1) | 4.0 (2.0) |  |  |  |  |  |
| KB       | 4.7 (1.9)           | 4.7 (2.3) | 4.9 (2.3) | 4.2 (2.3) | 5.4 (2.5) |  |  |  |  |  |
| КСН      | 5.6 (3.0)           | 5.2 (2.9) | 4.7 (2.6) | 3.9 (2.0) | 4.0 (2.0) |  |  |  |  |  |
| KK       | 6.3 (3.7)           | 6.3 (3.8) | 6.2 (3.6) | 5.9 (3.6) | 7.0 (3.9) |  |  |  |  |  |
| SP       | 4.0 (2.4)           | 7.6 (2.2) | 4.7 (2.6) | 4.8 (2.8) | 4.5 (2.6) |  |  |  |  |  |
| РЈҮ      | 3.2 (1.5)           | 3.2 (1.5) | 3.5 (1.8) | 3.9 (1.7) | 3.8 (1.7) |  |  |  |  |  |
| MUR      | 4.8 (2.4)           | 3.5 (1.8) | 3.0 (1.8) | 3.7 (1.9) | 3.1 (1.9) |  |  |  |  |  |
| TI       | 4.0 (2.0)           | 3.5 (2.1) | 3.0 (1.8) | 3.2 (1.7) | 2.8 (1.6) |  |  |  |  |  |
| TPG      | 7.0 (3.7)           | 5.1 (2.7) | 4.1 (2.7) | 4.7 (2.6) | 5.2 (2.7) |  |  |  |  |  |
| SJ       | 4.3 (2.1)           | 4.2 (2.1) | 6.2 (3.1) | 6.5 (3.5) | 5.0 (2.5) |  |  |  |  |  |
| KJG      | 4.0 (2.7)           | 4.6 (2.9) | 4.7 (3.2) | 4.8 (3.1) | 3.8 (2.6) |  |  |  |  |  |
| KGR      | 3.4 (1.7)           | 4.3 (2.1) | 4.2 (2.6) | 4.2 (2.1) | 4.0 (2.4) |  |  |  |  |  |
| SJMC     | 2.4 (1.3)           | 2.7 (1.6) | 2.6 (1.6) | 2.5 (1.6) | -         |  |  |  |  |  |
| TML      | 5.1 (3.0)           | 6.4 (3.5) | 4.8 (2.6) | 4.7 (2.7) | 5.0 (2.8) |  |  |  |  |  |
| КР       | 5.8 (3.1)           | 5.7 (3.0) | 5.5 (2.9) | 4.7 (2.7) | 4.1 (2.6) |  |  |  |  |  |
| SMJ      | 3.7 (2.3)           | 3.9 (2.5) | 3.6 (2.2) | 3.2 (1.9) | 3.4 (2.1) |  |  |  |  |  |
| BP       | 4.3 (2.2)           | 5.7 (3.3) | 4.5 (2.8) | 4.4 (2.7) | 3.7 (2.4) |  |  |  |  |  |
| TW       | 3.5 (2.2)           | 3.5 (2.4) | 3.8 (2.5) | 4.2 (2.5) | 4.7 (2.4) |  |  |  |  |  |
| MRI      | 4.4 (2.3)           | 5.2 (2.5) | 4.5 (2.6) | 4.9 (3.0) | 5.1 (3.7) |  |  |  |  |  |
| KLM      | 3.6 (2.0)           | 3.3 (1.9) | 3.2 (1.7) | 3.3 (1.8) | 3.8 (2.0) |  |  |  |  |  |
| SDG      | 4.8 (2.7)           | 4.8 (2.8) | 4.4 (2.2) | 4.4 (2.4) | 5.6 (2.7) |  |  |  |  |  |
| SB       | 4.7 (2.4)           | 5.1 (2.5) | 5.4 (3.3) | 6.8 (4.0) | 4.0 (2.2) |  |  |  |  |  |
| DKS      | 6.0 (3.1)           | 5.1 (3.1) | 4.5 (2.5) | 3.7 (1.9) | 4.7 (2.6) |  |  |  |  |  |
| SI       | 7.0 (3.7)           | 6.2 (3.3) | 5.4 (2.7) | 5.1 (2.6) | 4.3 (2.1) |  |  |  |  |  |
| SBL      | 6.0 (3.2)           | 5.7 (3.1) | 5.5 (3.1) | 4.8 (2.7) | 5.1 (3.0) |  |  |  |  |  |
| AMP      | 5.4 (3.2)           | 5.0 (2.9) | 5.4 (2.9) | 5.7 (3.0) | 4.8 (2.7) |  |  |  |  |  |
| LIK      | 2.5 (1.6)           | 3.5 (1.8) | 3.5 (1.9) | 4.1 (2.6) | 3.3 (2.0) |  |  |  |  |  |
| UMMC     | -                   | 7.2 (3.8) | 5.6 (3.3) | 5.5 (2.6) | 5.9 (2.8) |  |  |  |  |  |
| LKW      | -                   | 5.3 (2.0) | 4.1 (2.0) | 3.7 (2.1) | 4.6 (2.5) |  |  |  |  |  |
| BM       | -                   | -         | 9.0 (4.3) | 8.8 (5.6) | 5.9 (3.4) |  |  |  |  |  |
| SLR      | -                   | 6.3 (3.2) | 6.3 (3.0) | 6.6 (3.0) | 6.2 (3.0) |  |  |  |  |  |
| PD       | -                   | 4.0 (2.5) | 4.4 (2.8) | 3.5 (2.0) | 4.7 (2.7) |  |  |  |  |  |

## Table 8 :Length of ICU stay, by individual hospital 2011 - 2015

| KKR   | -         | 5.6 (2.9) | 5.7 (3.4) | 5.8 (3.2) | 5.0 (2.9) |
|-------|-----------|-----------|-----------|-----------|-----------|
| SGT   | -         | 4.5 (2.8) | 3.3 (2.3) | 3.7 (2.1) | 3.1 (1.9) |
| TM    | -         | 3.5 (1.9) | 3.8 (2.5) | 4.5 (3.3) | 3.8 (2.4) |
| KEM   | -         | 3.3 (2.6) | 4.2 (2.8) | 5.0 (2.6) | 3.0 (2.1) |
| KLP   | -         | 1.3 (0.8) | 2.9 (1.5) | 3.0 (2.0) | 6.9 (3.2) |
| LAB   | -         | 4.6 (2.2) | 4.4 (1.9) | 4.1 (1.8) | 4.9 (2.8) |
| KEN   | -         | 6.5 (2.9) | 5.1 (2.9) | 5.4 (3.0) | 4.5 (2.9) |
| BIN   | -         | 5.4 (2.8) | 3.9 (2.1) | 3.9 (2.3) | 3.8 (2.2) |
| LD    | -         | 5.7 (2.7) | 4.8 (2.7) | 5.1 (3.4) | 6.1 (3.9) |
| Total | 4.7 (2.4) | 4.8 (2.6) | 4.7 (2.5) | 4.7 (2.5) | 4.8 (2.6) |

The average length of ICU stay in 2015 was 4.8 days. This has not changed much over the past 5 years.

The median length of stay was 2.6 days.

Among the MOH ICUs, TI had the shortest average length of stay (2.8 days). KK recorded the longest length of ICU stay (7.0 days).

|          |             | Mean (Median), days |             |             |             |  |  |  |
|----------|-------------|---------------------|-------------|-------------|-------------|--|--|--|
| Hospital | 2011        | 2012                | 2013        | 2014        | 2015        |  |  |  |
| AS       | 14.5 (9.5)  | 15.1 (9.2)          | 14.6 (8.8)  | 13.1 (7.9)  | 13.4 (8.8)  |  |  |  |
| PP       | 19.0 (11.5) | 19.5 (12.0)         | 19.2 (12.0) | 20.2 (12.5) | 18.2 (11.9) |  |  |  |
| IPH      | 15.4 (9.3)  | 16.0 (10.6)         | 15.2 (9.8)  | 15.3 (10.0) | 15.4 (9.8)  |  |  |  |
| KL       | 19.1 (11.0) | 17.7 (10.7)         | 16.5 (10.2) | 14.8 (8.6)  | 15.3 (8.4)  |  |  |  |
| SLG      | 16.7 (11.0) | 17.3 (12.1)         | 15.2 (10.5) | 15.2 (9.9)  | 16.5 (10.3) |  |  |  |
| KLG      | 13.6 (8.4)  | 12.2 (7.6)          | 12.5 (7.80  | 11.5 (7.4)  | 13.5 (8.4)  |  |  |  |
| SBN      | 19.9 (11.0) | 17.0 (10.6)         | 18.5 (10.7) | 17.5 (10.4) | 18.4 (11.1) |  |  |  |
| MLK      | 14.2 (9.3)  | 16.0 (10.0)         | 14.4 (8.6)  | 16.2 (9.6)  | 14.4 (8.7)  |  |  |  |
| JB       | 14.6 (10.1) | 14.7 (9.9)          | 13.6 (9.3)  | 14.2 (9.4)  | 13.5 (9.3)  |  |  |  |
| KTN      | 17.1 (12.1) | 18.0 (12.3)         | 15.8 (10.8) | 16.6 (10.4) | 15.8 (10.0) |  |  |  |
| KT       | 12.6 (8.3)  | 14.5 (9.7)          | 14.6 (9.80) | 13.5 (8.8)  | 12.9 (8.5)  |  |  |  |
| KB       | 14.5 (10.0) | 16.5 (10.0)         | 14.4 (9.6)  | 12.0 (8.0)  | 16.1 (9.6)  |  |  |  |
| КСН      | 20.5 (12.6) | 21.4 (13.7)         | 19.2 (12.1) | 19.5 (11.8) | 19.4 (12.0) |  |  |  |
| KK       | 21.4 (14.1) | 19.9 (11.7)         | 17.7 (11.1) | 16.4 (10.9) | 18.4 (10.8) |  |  |  |
| SP       | 10.8 (7.4)  | 14.0 (8.2)          | 12.9 (8.9)  | 12.6 (8.4)  | 11.9 (8.0)  |  |  |  |
| РЈҮ      | 11.6 (8.0)  | 11.7 (8.6)          | 13.2 (8.2)  | 12.4 (7.4)  | 12.4 (7.6)  |  |  |  |
| MUR      | 16.3 (10.3) | 22.0 (10.5)         | 13.6 (8.4)  | 13.6 (9.1)  | 13.7 (8.6)  |  |  |  |
| TI       | 12.5 (8.4)  | 14.2 (9.6)          | 11.4 (8.2)  | 11.3 (7.5)  | 10.0 (7.0)  |  |  |  |
| TPG      | 15.1 (10.3) | 12.6 (8.3)          | 10.7 (7.8)  | 11.7 (8.0)  | 12.7 (8.2)  |  |  |  |
| SJ       | 12.9 (9.1)  | 13.0 (8.2)          | 14.3 (9.7)  | 15.9 (11.1) | 14.1 (9.1)  |  |  |  |
| KJG      | 11.2 (7.9)  | 13.5 (8.3)          | 12.5 (8.6)  | 13.4 (8.7)  | 10.1 (7.0)  |  |  |  |
| KGR      | 12.6 (8.2)  | 18.3 (10.9)         | 14.2 (9.7)  | 13.8 (7.9)  | 11.6 (8.6)  |  |  |  |
| TML      | 14.6 (9.9)  | 14.5 (10.7)         | 13.1 (9.3)  | 11.9 (8.0)  | 11.8 (7.6)  |  |  |  |
| КР       | 12.8 (8.7)  | 15.5 (9.3)          | 13.6 (8.5)  | 13.3 (8.0)  | 11.3 (7.1)  |  |  |  |
| SMJ      | 12.1 (7.1)  | 12.0 (7.2)          | 10.5 (7.1)  | 8.4 (6.1)   | 9.2 (6.3)   |  |  |  |
| BP       | 11.4 (8.0)  | 13.6 (9.5)          | 14.0 (9.0)  | 15.9 (9.7)  | 11.2 (7.6)  |  |  |  |
| TW       | 15.3 (9.1)  | 13.0 (8.4)          | 14.1 (9.1)  | 13.5 (8.6)  | 13.7 (7.8)  |  |  |  |
| MRI      | 15.0 (9.6)  | 14.0 (10.8)         | 12.4 (9.9)  | 13.1 (10.0) | 14.8 (10.7) |  |  |  |
| KLM      | 11.4 (7.3)  | 12.6 (7.8)          | 11.7 (7.9)  | 11.6 (7.6)  | 13.2 (8.0)  |  |  |  |
| SDG      | 14.7 (9.0)  | 14.6 (9.4)          | 14.3 (8.1)  | 13.2 (7.5)  | 14.8 (7.8)  |  |  |  |
| SB       | 13.1 (8.1)  | 13.1 (8.3)          | 15.7 (10.5) | 15.3 (10.0) | 13.9 (8.3)  |  |  |  |
| DKS      | 13.7 (10.1) | 12.4 (8.2)          | 11.4 (7.6)  | 11.8 (6.8)  | 13.5 (8.0)  |  |  |  |
| SI       | 19.7 (12.2) | 16.0 (9.7)          | 14.6 (9.2)  | 15.3 (9.3)  | 13.4 (8.0)  |  |  |  |
| SBL      | 19.5 (11.2) | 19.2 (10.8)         | 17.0 (9.8)  | 15.4 (7.9)  | 16.3 (9.2)  |  |  |  |
| AMP      | 15.1 (10.2) | 15.4 (10.5)         | 15.1 (10.7) | 16.1 (10.5) | 14.2 (10.4) |  |  |  |
| LIK      | 11.6 (7.6)  | 18.4 (9.7)          | 15.3 (10.9) | 15.0 (10.6) | 11.1 (7.5)  |  |  |  |
| UMMC     | -           | 25.2 (16.2)         | 22.0 (12.4) | 19.7 (11.4) | 19.4 (11.8) |  |  |  |
| LKW      | -           | 12.7 (6.4)          | 12.5 (6.6)  | 10.5 (5.9)  | 10.1 (6.7)  |  |  |  |
| BM       | -           | 20.9 (10.1)         | 16.3 (10.3) | 14.8 (11.5) | 11.8 (8.8)  |  |  |  |
| SLR      | -           | 12.1 (7.9)          | 12.2 (6.6)  | 13.3 (8.2)  | 12.9 (8.2)  |  |  |  |
| PD       | -           | 10.2 (5.9)          | 10.9 (7.4)  | 10.2 (5.9)  | 11.8 (7.0)  |  |  |  |
| KKR      | -           | 12.5 (9.6)          | 13.6 (8.6)  | 11.4 (7.0)  | 11.1 (8.0)  |  |  |  |

### Table 9 :Length of hospital stay, by individual hospital 2011 - 2015

| Total | 14.9 (9.3) | 15.5 (9.5)  | 14.4 (9.0)  | 14.2 (8.7)  | 14.4 (8.8)  |
|-------|------------|-------------|-------------|-------------|-------------|
| LD    | -          | 12.8 (7.7)  | 13.2 (8.3)  | 14.2 (9.5)  | 18.3 (12.6) |
| BIN   | -          | 21.5 (12.6) | 14.2 (10.3) | 13.4 (7.9)  | 17.1 (10.6) |
| KEN   | -          | 19.2 (10.4) | 15.0 (9.6)  | 15.1 (10.4) | 17.2 (10.0) |
| LAB   | -          | 14.4 (6.4)  | 10.0 (4.3)  | 9.4 (5.9)   | 11.8 (9.5)  |
| KLP   | -          | 6.3 (6.9)   | 11.4 (6.9)  | 11.3 (7.5)  | 16.6 (10.5) |
| KEM   | -          | 9.6 (7.8)   | 12.3 (8.0)  | 11.9 (8.0)  | 8.7 (7.2)   |
| ТМ    | -          | 12.0 (8.2)  | 9.1 (6.3)   | 12.5 (7.3)  | 10.7 (7.1)  |
| SGT   | -          | 14.8 (8.3)  | 10.4 (7.1)  | 10.7 (7.6)  | 10.1 (6.5)  |

The average length of hospital stay was 14.4 days with a median of 8.8 days.

KCH and UMMC recorded the longest length of hospital stay of 19.4 days.

KEM recorded the shortest length of hospital stay of 8.7 days.

It is interesting to note that BM and TML showed a steady decrease in average length of hospital stay while LD showed an increase in the mean length of hospital stay over the last five years.

|                        | ICUs                 |                 |                 |                 |                  |  |  |
|------------------------|----------------------|-----------------|-----------------|-----------------|------------------|--|--|
| <b>Referring units</b> | Adm <u>&gt;</u> 1000 | Adm 500 - 999   | Adm < 500       | UMMC            | Total            |  |  |
|                        | n (%)                | n (%)           | n (%)           | n (%)           | n (%)            |  |  |
| Medicine               | 12503                | 3952            | 3441            | 428             | 20324            |  |  |
|                        | (50.8)               | (51.8)          | (57.1)          | (33.3)          | (51.4)           |  |  |
| General                | 4507                 | 1758            | 1262            | 327             | 7854             |  |  |
| Surgery                | (18.3)               | (23.0)          | (20.9)          | (25.4)          | (19.9)           |  |  |
| Orthopaedic            | 1834                 | 557             | 414             | 140             | 2945             |  |  |
| Surgery                | (7.5)                | (7.3)           | (6.9)           | (10.9)          | (7.4)            |  |  |
| O&G                    | 1115                 | 394             | 520             | 72              | 2101             |  |  |
|                        | (4.5)                | (5.2)           | (8.6)           | (5.6)           | (5.3)            |  |  |
| Vascular               | 52                   | 27              | 7               | 0               | 86               |  |  |
| Surgery                | (0.2)                | (0.4)           | (0.1)           | (0.0)           | (0.2)            |  |  |
| Paediatric             | 84                   | 42              | 35              | 0               | 161              |  |  |
| Surgery                | (0.3)                | (0.6)           | (0.6)           | (0.0)           | (0.4)            |  |  |
| Neurosurgery           | 2339                 | 49              | 21              | 23              | 2432             |  |  |
| 0.                     | (9.5)                | (0.6)           | (0.3)           | (1.8)           | (6.2)            |  |  |
| Plastic Surgery        | 143                  | 6               | 0               | 18              | 167              |  |  |
|                        | (0.6)                | (0.1)           | (0.0)           | (1.4)           | (0.4)            |  |  |
| ENT                    | 482                  | 132             | 83              | 36              | 733              |  |  |
|                        | (2.0)                | (1.7)           | (1.4)           | (2.8)           | (1.9)            |  |  |
| Ophthalmology          | 32                   | 11              | 5               | 1               | 49               |  |  |
|                        | (0.1)                | (0.1)           | (0.1)           | (0.1)           | (0.1)            |  |  |
| Urology                | 244                  | 30              | 0               | 48              | 322              |  |  |
|                        | (1.0)                | (0.4)           | (0.0)           | (3.7)           | (0.8)            |  |  |
| Dental Surgery         | 89                   | 28              | 22              | 0               | 139              |  |  |
|                        | (0.4)                | (0.4)           | (0.4)           | (0.0)           | (0.4)            |  |  |
| Paediatric             | 398                  | 476             | 202             | 0               | 1076             |  |  |
| Medical                | (1.6)                | (6.2)           | (3.4)           | (0.0)           | (2.7)            |  |  |
| Cardiology             | 62                   | 8               | 0               | 16              | 86               |  |  |
|                        | (0.3)                | (0.1)           | (0.0)           | (1.2)           | (0.2)            |  |  |
| Haematology            | 27                   | 114             | 1               | 38              | 180              |  |  |
|                        | (0.1)                | (1.5)           | (0.0)           | (3.0)           | (0.5)            |  |  |
| Nephrology             | 198                  | 35              | 0               | 68<br>(5.2)     | 301              |  |  |
|                        | (0.8)                | (0.5)           | (0.0)           | (5.3)           | (0.8)            |  |  |
| Neurology              | 154                  | 3               | 2               | 44              | 203              |  |  |
| <b>C</b> 11 11 1       | (0.6)                | (0.0)           | (0.0)           | (3.4)           | (0.5)            |  |  |
| Cardiothoracic         | 4<br>(0.0)           | 1<br>(0.0)      | 1<br>(0.0)      | 4               | 10               |  |  |
| Surgery                | · · ·                | · · · ·         | . ,             | (0.3)           | (0.0)            |  |  |
| Others                 | 337<br>(1.4)         | 5<br>(0.1)      | 8<br>(0.1)      | 22<br>(1.7)     | 372              |  |  |
|                        | (1.4)                | (0.1)           | (0.1)           | (1./)           | (0.9)            |  |  |
| Total                  | 24604<br>(100.0)     | 7628<br>(100.0) | 6024<br>(100.0) | 1285<br>(100.0) | 39541<br>(100.0) |  |  |

#### Table 10 :Referring units, by category of ICU 2015

Several major hospitals have medical subspecialities-hence the percentage of admissions from medicine unit was lower.

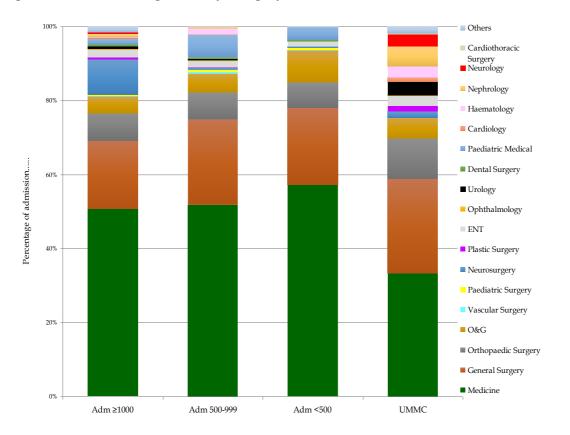
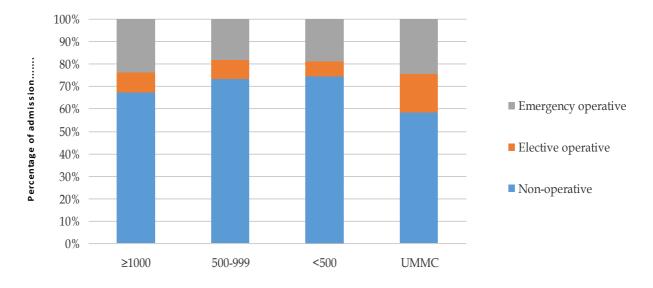



Figure 6: Referring units, by category of ICU 2015

The percentage of patients admitted from the medical-based disciplines has increased from 43.0% in 2011 to 51.4% in 2015.

|               |                      | ICUs          |           |         |         |  |  |
|---------------|----------------------|---------------|-----------|---------|---------|--|--|
|               | Adm <u>&gt;</u> 1000 | Adm 500 - 999 | Adm < 500 | UMMC    | Total   |  |  |
|               |                      | n (%)         |           |         |         |  |  |
|               | n (%)                |               | n (%)     | n (%)   | n (%)   |  |  |
| Non-operative | 16522                | 5596          | 4469      | 738     | 27325   |  |  |
| -             | (67.1)               | (73.3)        | (74.2)    | (58.3)  | (69.1)  |  |  |
|               |                      |               |           |         |         |  |  |
| Elective      | 2188                 | 663           | 430       | 216     | 3497    |  |  |
| operative     | (8.9)                | (8.7)         | (7.1)     | (17.1)  | (8.8)   |  |  |
| -             |                      |               |           |         |         |  |  |
| Emergency     | 5898                 | 1374          | 1125      | 311     | 8708    |  |  |
| operative     | (24.0)               | (18.0)        | (18.7)    | (24.6)  | (22.0)  |  |  |
| -             |                      |               |           |         |         |  |  |
| Total         | 24608                | 7633          | 6024      | 1265    | 39530   |  |  |
| 10(a)         | (100.0)              | (100.0)       | (100.0)   | (100.0) | (100.0) |  |  |

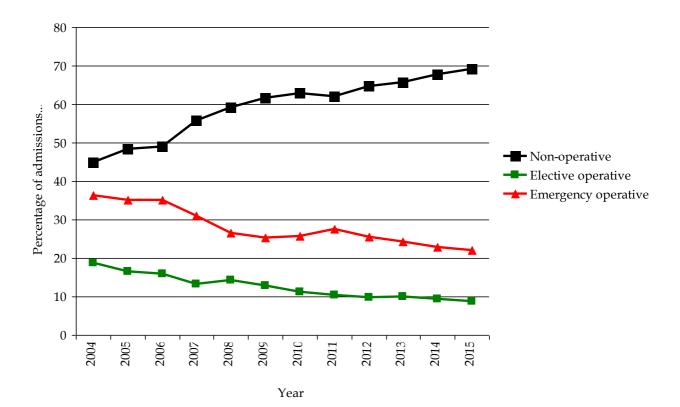

| Table 11 : | Category of patients, | , by category of ICU 2015 |
|------------|-----------------------|---------------------------|
|------------|-----------------------|---------------------------|

Non-operative

*Operative-elective* Refers to patient in who surgery was done within 7 days before ICU admission or during the first 24 hours after ICU admission on a scheduled basis

Operativeemergency Refers to patient in who surgery was done within 7 days before ICU admission or during the first 24 hours after ICU admission on an unscheduled basis

Refers to patients in whom no surgery was done out within 7 days before ICU admission or during the first 24 hours after ICU admission




#### Figure 7: Category of patients, by category of ICU 2015

Table 12 :Category of patients in MOH hospitals 2011 - 2015

| Category of patients | 2011<br>(%) | 2012<br>(%) | 2013<br>(%) | 2014<br>(%) | 2015<br>(%) |
|----------------------|-------------|-------------|-------------|-------------|-------------|
| Non-operative        | 62.0        | 65.1        | 66.1        | 67.8        | 69.1        |
| Elective operative   | 10.5        | 10.3        | 10.4        | 9.4         | 8.8         |
| Emergency operative  | 27.5        | 24.6        | 23.6        | 22.8        | 22.0        |

#### Figure 8: Category of patients in MOH hospitals 2004 – 2015



The proportion of patients admitted into ICU after elective operations was higher in UMMC (17%) compared with that of MOH ICUs (8%).

Non-operative admissions accounted for 69% and 58% of all admissions to MOH and UMMC ICUs respectively. There was a steady increase in non-operative patients over the past 10 years with a 11% increase from 2005 to 2015, while the percentage of elective operative and emergency operative patients decreased by 8% and 13% respectively.

|                      | ICUs       |               |           |         |         |
|----------------------|------------|---------------|-----------|---------|---------|
| Location             | Adm > 1000 | Adm 500 - 999 | Adm < 500 | UMMC    | Total   |
|                      | n (%)      | n (%)         | n (%)     | n (%)   | n (%)   |
|                      |            |               |           |         |         |
| Ward                 | 8534       | 3021          | 2421      | 407     | 14383   |
|                      | (34.7)     | (39.6)        | (40.2)    | (31.9)  | (36.4)  |
| ОТ                   | 6400       | 1399          | 1051      | 459     | 9309    |
|                      | (26.0)     | (18.3)        | (17.5)    | (35.9)  | (23.5)  |
| Emergency            | 7640       | 2701          | 2268      | 376     | 12985   |
| department           | (31.0)     | (35.4)        | (37.7)    | (29.4)  | (32.8)  |
| Other critical areas | 718        | 183           | 117       | 2       | 1020    |
|                      | (2.9)      | (2.4)         | (1.9)     | (0.2)   | (2.6)   |
| Other locations      | 192        | 61            | 11        | 8       | 272     |
|                      | (0.8)      | (0.8)         | (0.2)     | (0.6)   | (0.7)   |
| Other hospitals      | 1127       | 268           | 152       | 25      | 1572    |
| -                    | (4.6)      | (3.5)         | (2.5)     | (2.0)   | (4.0)   |
| Total                | 24611      | 7633          | 6020      | 1277    | 39541   |
| Total                | (100.0)    | (100.0)       | (100.0)   | (100.0) | (100.0) |
|                      | . ,        | . ,           | . ,       | . ,     |         |

| Table 13 : | Location before ICU admission, by category of ICU 2015 |
|------------|--------------------------------------------------------|
|------------|--------------------------------------------------------|

Location before ICU admission: Refers to the area/location patient was being managed just before being admitted into ICU

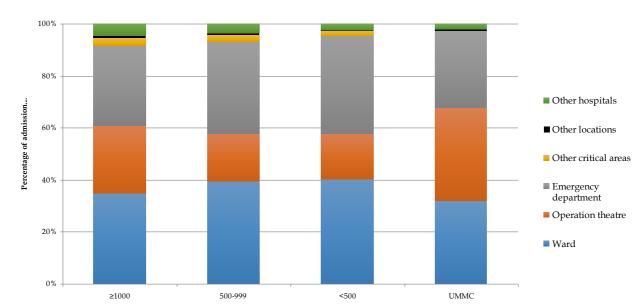
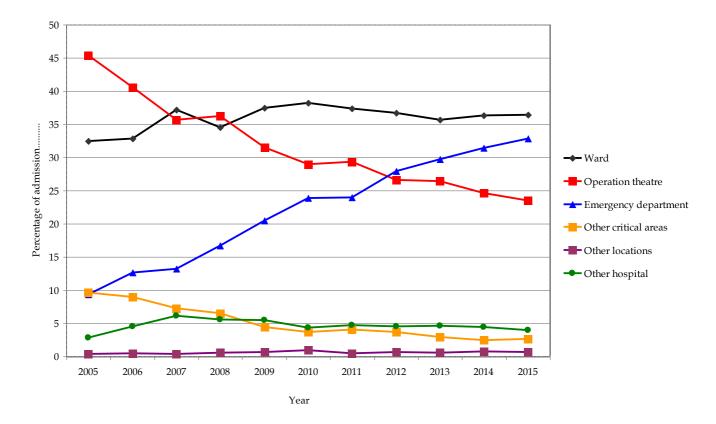
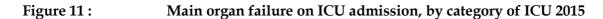



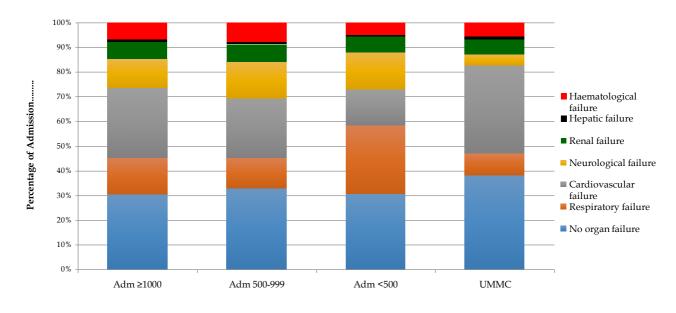

Figure 9: Location before ICU admission, by category of ICU 2015

| Location                | 2011 | 2012 | 2013 | 2014 | 2015 |
|-------------------------|------|------|------|------|------|
|                         | (%)  | (%)  | (%)  | (%)  | (%)  |
| Ward                    | 37.4 | 36.7 | 35.7 | 36.3 | 36.4 |
| Operation theatre       | 29.3 | 26.6 | 26.4 | 24.6 | 23.5 |
| Emergency<br>department | 24.0 | 27.9 | 29.7 | 31.4 | 32.8 |
| Other critical areas    | 4.1  | 3.7  | 2.9  | 2.5  | 2.6  |
| Other locations         | 0.5  | 0.7  | 0.6  | 0.8  | 0.7  |
| Other hospitals         | 4.7  | 4.5  | 4.6  | 4.4  | 4.0  |

Table 14 :Location before ICU admission in MOH hospitals 2011 - 2015

Figure 10: Location before ICU admission in MOH hospitals 2005 – 2015



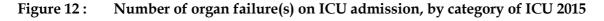


The percentage of admissions from the emergency department had increased almost threefold, while admissions from the operating theatre had decreased steadily over the past 10 years.

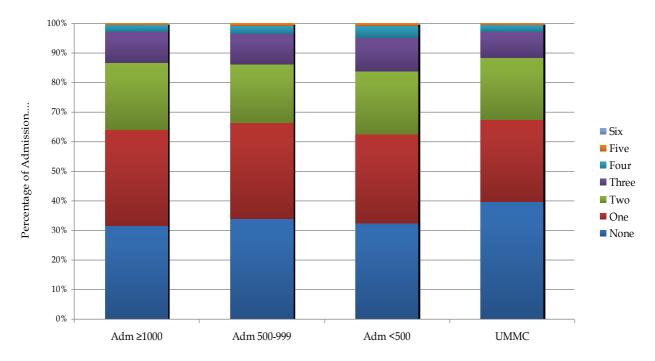
|                    |            | ICUs             |           |         |         |  |
|--------------------|------------|------------------|-----------|---------|---------|--|
| Main organ failure | Adm ≥ 1000 | Adm 500 -<br>999 | Adm < 500 | UMMC    | Total   |  |
|                    | n (%)      | n (%)            | n (%)     | n (%)   | n (%)   |  |
| Without organ      | 6622       | 2065             | 1530      | 475     | 10692   |  |
| failure            | (30.4)     | (33.0)           | (30.7)    | (38.1)  | (31.2)  |  |
| Respiratory        | 3259       | 769              | 1373      | 109     | 5510    |  |
|                    | (15.0)     | (12.3)           | (27.6)    | (8.7)   | (16.1)  |  |
| Cardiovascular     | 6198       | 1514             | 733       | 447     | 8892    |  |
|                    | (28.5)     | (24.2)           | (14.7)    | (35.8)  | (26.0)  |  |
| Neurological       | 2545       | 927              | 740       | 56      | 4268    |  |
|                    | (11.7)     | (14.8)           | (14.9)    | (4.5)   | (12.5)  |  |
| Renal              | 1485       | 442              | 314       | 75      | 2316    |  |
|                    | (6.8)      | (7.1)            | (6.3)     | (6.0)   | (6.8)   |  |
| Haematological     | 1462       | 486              | 241       | 70      | 2259    |  |
|                    | (6.7)      | (7.8)            | (4.8)     | (5.6)   | (6.6)   |  |
| Hepatic            | 210        | 56               | 47        | 15      | 328     |  |
|                    | (1.0)      | (0.9)            | (0.9)     | (1.2)   | (1.0)   |  |
| Total              | 21781      | 6259             | 4978      | 1247    | 34265   |  |
|                    | (100.0)    | (100.0)          | (100.0)   | (100.0) | (100.0) |  |

#### Table 15 :Main organ failure on ICU admission, by category of ICU 2015

The definition of organ failure is based on the Sequential Organ Failure Assessment (SOFA) [4] Main organ failure: Refers to the main or most important organ failure within **24 hours** of ICU admission and management.







In MOH ICUs, 31% of the admissions did not have organ failure during the first 24 hours of ICU admission.

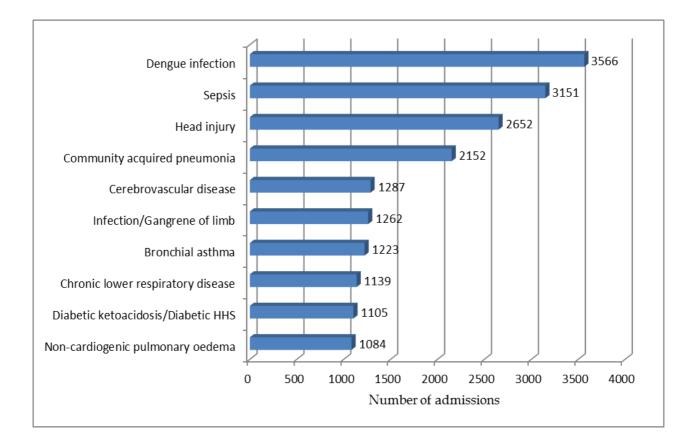
Among admissions with organ failure, cardiovascular failure (38%) was the most common organ failure during the first 24 hours of ICU admission followed by respiratory (24%), neurological (18%), renal (10%), haematological (9%) and hepatic (1%).

|                       | ICUs                |                        |                    |               |                |  |
|-----------------------|---------------------|------------------------|--------------------|---------------|----------------|--|
| Main organ<br>failure | Adm ≥ 1000<br>n (%) | Adm 500 - 999<br>n (%) | Adm < 500<br>n (%) | UMMC<br>n (%) | Total<br>n (%) |  |
| Without               | 6830 (31.4)         | 2117 (33.8)            | 1611 (32.4)        | 493 (39.5)    | 11051 (32.3)   |  |
| Single                | 7124 (32.7)         | 2038 (32.6)            | 1496 (30.1)        | 348 (27.9)    | 11006 (32.1)   |  |
| Two                   | 4886 (22.4)         | 1237 (19.8)            | 1068 (21.5)        | 260 (20.9)    | 7451 (21.7)    |  |
| Three                 | 2297 (10.5)         | 647 (10.3)             | 569 (11.4)         | 110 (8.8)     | 3623 (10.6)    |  |
| Four                  | 545 (2.5)           | 181 (2.9)              | 200 (4.0)          | 31 (2.5)      | 957 (2.8)      |  |
| Five                  | 87 (0.4)            | 38 (0.6)               | 29 (0.6)           | 4 (0.3)       | 158 (0.5)      |  |
| Six                   | 9 (0.0)             | 1 (0.0)                | 5 (0.1)            | 1 (0.1)       | 16 (0.0)       |  |
| Total                 | 21778 (100.0)       | 6259 (100.0)           | 4978 (100.0)       | 1247 (100.0)  | 34262 (100.0)  |  |

 Table 16 :
 Number of organ failure(s) on ICU admission, by category of ICU 2015






In 2015, about two-thirds (68%) of the patients were admitted with one or more organ failures in MOH ICUs. 32% of these patients had single organ failure. 22%, 11%, 2.8%, 0.5% and 0.04% had two, three, four, five and six organ failures respectively.

| Table 17 : | Ten most common | diagnoses l | leading to ICU | admission 2015 |
|------------|-----------------|-------------|----------------|----------------|
|            |                 | 0           | 0              |                |

| Diagnosis                                                                     | Number | Percentage |  |
|-------------------------------------------------------------------------------|--------|------------|--|
| Hospitals with admission > 1000                                               |        |            |  |
| Dengue                                                                        | 2470   | 10.0       |  |
| Sepsis                                                                        | 2050   | 8.2        |  |
| Head Injury                                                                   | 1887   | 7.7        |  |
| Community acquired pneumonia                                                  | 1257   | 5.1        |  |
| Cerebrovascular disease (infarct, thrombosis, haemorrhage)                    | 1009   | 4.1        |  |
| Infection/gangrene of limb (including osteomyelitis, necrotizing fasciitis)   | 902    | 3.7        |  |
| Non-cardiogenic pulmonary oedema                                              | 776    | 3.2        |  |
| Bronchial asthma                                                              | 737    | 3.0        |  |
| Diabetic ketoacidosis / diabetic hyperosmolar hyperglycaemic state (HHS)      | 701    | 2.8        |  |
| Chronic lower respiratory disease                                             | 647    | 2.6        |  |
| Hospitals with admission 500 – 999                                            |        |            |  |
| Dengue                                                                        | 696    | 9.1        |  |
| Sepsis                                                                        | 646    | 8.5        |  |
| Community acquired pneumonia                                                  | 460    | 6.0        |  |
| Head injury                                                                   | 448    | 5.9        |  |
| Bronchial asthma                                                              | 277    | 3.6        |  |
| Chronic lower respiratory disease                                             | 269    | 3.5        |  |
| Diabetic ketoacidosis / diabetic hyperosmolar hyperglycaemic state (HHS)      | 230    | 3.0        |  |
| Other respiratory conditions                                                  | 198    | 2.6        |  |
| Gastrointestinal perforation (including anastomotic leak)                     | 189    | 2.5        |  |
| Non-cardiogenic pulmonary oedema                                              | 185    | 2.4        |  |
| Hospitals with admission < 500                                                |        |            |  |
| Sepsis                                                                        | 455    | 7.5        |  |
| Community acquired pneumonia                                                  | 435    | 7.2        |  |
| Dengue                                                                        | 400    | 6.6        |  |
| Head injury                                                                   | 317    | 5.3        |  |
| Chronic lower respiratory disease                                             | 223    | 3.7        |  |
| Bronchial asthma                                                              | 209    | 3.5        |  |
| Infection / gangrene of limb (including osteomyelitis, necrotizing fasciitis) | 180    | 3.0        |  |
| Leptospirosis                                                                 | 147    | 2.4        |  |
| Gastrointestinal perforation (including anastomotic leak)                     | 157    | 2.5        |  |
| Injury to extremities including fractures                                     | 133    | 2.2        |  |
| UMMC                                                                          |        |            |  |
| Sepsis                                                                        | 234    | 18.1       |  |
| Dengue                                                                        | 70     | 5.4        |  |
| Diabetic ketoacidosis / diabetic hyperosmolar hyperglycaemic state (HHS)      | 51     | 3.9        |  |
| Other renal / genito-urinary conditions (UV prolapse, TURP syndrome)          | 46     | 3.6        |  |
| Head injury                                                                   | 41     | 3.2        |  |

| Gastrointestinal perforation (including anastomotic leak) | 39 | 3.0 |
|-----------------------------------------------------------|----|-----|
| Pancreatic disorder (including acute pancreatitis)        | 37 | 2.9 |
| Community acquired pneumonia                              | 35 | 2.7 |
| Bronchial asthma                                          | 34 | 2.6 |
| Gastrointestinal bleeding                                 | 33 | 2.6 |
| Intra-abdominal / pelvic malignancy                       | 33 | 2.6 |

## Figure 13 : Ten most common diagnoses leading to ICU admission in MOH hospitals 2015



Since the inception of this registry, dengue infection became the most common diagnosis leading to ICU admission in 2014, followed by sepsis, head injury and community-acquired pneumonia. This situation has remained the same for 2015. The top 10 diagnoses leading to ICU admission had been the same for 2014 and 2015.

Sepsis, head injury and community-acquired pneumonia were the three most common diagnoses leading to ICU admission over the last 10 years until 2013.

# Table 18 :Ten most common diagnoses leading to ICU admission using<br/>APACHE III diagnostic category 2015

| Diagnosis                                         | Number | Percentage |
|---------------------------------------------------|--------|------------|
| Hospitals with admission $\geq$ 1000              |        |            |
| Non-operative: Sepsis (other than urinary)        | 2586   | 10.5       |
| Non-operative: Sepsis with shock (not urinary)    | 2067   | 8.4        |
| Non-operative: Head trauma +/- multi trauma       | 1053   | 4.3        |
| Non-operative: Bacterial pneumonia                | 1033   | 4.2        |
| Operative: Head trauma +/- multi trauma           | 875    | 3.6        |
| Non-operative: Other medical diseases             | 803    | 3.3        |
| Non-operative: Pulmonary oedema (non-cardiogenic) | 742    | 3.0        |
| Non-operative: Asthma                             | 720    | 2.9        |
| Non-operative: Diabetic ketoacidosis              | 682    | 2.8        |
| Operative: Orthopaedic surgery                    | 651    | 2.6        |
| Hospitals with admission 500 – 999                |        | I          |
| Non-operative: Sepsis with shock (not urinary)    | 602    | 7.9        |
| Non-operative: Other medical diseases             | 456    | 6.0        |
| Non-operative: Other respiratory disease          | 373    | 4.9        |
| Non-operative: : Sepsis (other than urinary)      | 368    | 4.8        |
| Non-operative: Bacterial pneumonia                | 344    | 4.5        |
| Non-operative: Head trauma +/- multi trauma       | 332    | 4.3        |
| Non-operative: Other haematological diseases      | 257    | 3.4        |
| Non-operative: Asthma                             | 255    | 3.3        |
| Non-operative: COPD                               | 243    | 3.2        |
| Non-operative: Diabetic ketoacidosis              | 207    | 2.7        |
| Hospitals with admission < 500                    |        |            |
| Non-operative: Sepsis with shock (not urinary)    | 386    | 6.4        |
| Operative: Other medical/surgical diseases        | 378    | 6.3        |
| Non-operative: Other medical diseases             | 260    | 4.3        |
| Non-operative: : Sepsis (other than urinary)      | 256    | 4.2        |
| Non-operative: Other respiratory disease          | 228    | 3.8        |
| Non-operative: Bacterial pneumonia                | 227    | 3.8        |
| Non-operative: Head trauma +/- multi trauma       | 213    | 3.5        |
| Non-operative: Asthma                             | 199    | 3.3        |
| Non-operative: COPD                               | 188    | 3.1        |
| Non-operative: Other cardiovascular disease       | 162    | 2.7        |
| UMMC                                              |        |            |
| Non-operative: Sepsis with shock (not urinary)    | 158    | 12.2       |
| Non-operative: Other haematological diseases      | 78     | 6.0        |
| Operative: Orthopaedic surgery                    | 66     | 5.1        |
| Non-operative: Bacterial pneumonia                | 55     | 4.3        |
| Operative: GI neoplasm                            | 53     | 4.1        |
| Operative: GI perforation /rupture                | 46     |            |
|                                                   |        | 3.6        |
| Non-operative: Diabetic ketoacidosis              | 39     | 3.0        |

| Non-operative: Other respiratory disease      | 36 | 2.8 |
|-----------------------------------------------|----|-----|
| Operative: Cellulitis / soft tissue infection | 35 | 2.7 |
| Non-operative: Asthma                         | 34 | 2.6 |

#### Severe sepsis, ARDS and AKI within 24hrs of ICU admission 2015 Table 19:

|                | ICUs                |                        |                    |               |                |  |  |
|----------------|---------------------|------------------------|--------------------|---------------|----------------|--|--|
|                | Adm ≥ 1000<br>n (%) | Adm 500 - 999<br>n (%) | Adm < 500<br>n (%) | UMMC<br>n (%) | Total<br>n (%) |  |  |
| Severe sepsis* | 4410 (17.9)         | 1370 (18.0)            | 833 (13.8)         | 319 (24.7)    | 6932 (17.5)    |  |  |
| ARDS#          | 1388 (5.6)          | 725 (9.5)              | 366 (6.1)          | 89 (6.9)      | 2568 (6.5)     |  |  |
| AKI^           | 3801 (15.5)         | 1112 (14.6)            | 926 (15.4)         | 238 (18.4)    | 6077 (15.4)    |  |  |

\* Sepsis refers to documented infection with 2 out of 4 SIRS criteria:

1) Temperature >38.3 or < than 36 °C 2) Total white cell count > 12000 or < 4000

3) Heart rate > 90/min

4) Respiration rate > 20 breath / minute or PaCO2 < 32mmHg

Severe sepsis is sepsis with one of the following organ dysfunction:
(1) Hypotension: Systolic blood pressure < 90 mmHg or mean arterial pressure < 70 mm Hg</li>
(2) PaO₂/F₁O₂ ≤ 300 mmHg
(3) Acute decrease in platelet count to < 100 000 u/L</li>
(4) Acute increase in total bilirubin to > 70 umol/L
(5) Acute increase in serum creatinine to >170umol/L or urine output < 0.5 mL/kg/hour for > 2 hours
(6) Serum lactate >4 mmol/l

# ARDS refers to a severe form of acute lung injury with a  $PaO_2/F_1O_2$  ratio  $\leq 200$  mm Hg with diffuse radiologic infiltrates which is not predominantly due to heart failure

^AKI : Serum creatinine x 2 baseline or urine output < 0.5 ml/kg/hr x 12 hours

| Hospital         Severe<br>sepsis         ARDs<br>n (%)         ARI<br>n (%)         Severe<br>sepsis         ARI<br>sepsis         Severe<br>sepsis         ARI<br>sepsis         ARI<br>sepsis         ARIS         ARIS         ARIS           AS         380         198         227         394         200         290         344         102         226           BY         (68.8)         (5.2)         (33.6)         (32.6)         (31.1)         (21.9)         (25.2)         (7.5)         (17.3)           PP         (41.3)         58         377         370         35         293         414         23         224           (12.4)         (72.2)         (10.8)         (12.2)         (10.1)         (16.2)         (14.2)         (13.7)         (21.6)         (14.2)         (13.7)         (12.6)         (17.4)         (1.1)         (16.2)         (12.6)         (17.4)         (1.1)         (16.2)         (11.6)         (14.1)         (16.2)         (12.6)         (17.3)         (12.6)         (17.3)         (12.6)         (17.4)         (1.1)         (16.7)         (16.7)         (16.7)         (16.7)         (16.7)         (16.7)         (16.7)         (16.7)         (16.7)         (16.8)         (11.1)         (18.7)                  |          |         | 2013  |       |        | 2014  |         |        | 2015  |        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|-------|-------|--------|-------|---------|--------|-------|--------|
| AS         380         198         227         394         200         290         344         102         226           PP         413         586         377         370         35         293         414         23         294           (36.8)         (5.2)         (37.6)         (32.6)         (31.1)         (25.8)         (35.3)         (20.0)         (25.1)           IPH         149         87         129         148         123         197         188         181         288           IRL         (72)         (16.9)         (12.2)         (10.1)         (16.2)         (14.2)         (13.7)         (21.6)         (17.4)         (11.1)         (16.1)           SLG         409         190         259         270         189         232         257         116         219           G215         (23.8)         (16.8)         (11.1)         (40.6)         (75.5)         (15.5)         (35.0)         (41.1)         (18.7)           SBN         134         133         95         289         130         141         115         140         62           Q28.5         (28.2)         (28.2)         (28.5         <                                                                                                                              | Hospital | sepsis  |       |       | sepsis |       |         | sepsis |       |        |
| A5         (28.3)         (14.7)         (16.9)         (29.7)         (15.1)         (21.9)         (25.2)         (7.5)         (17.3)           PP         413         58         (37.7)         370         35         293         414         23         294           BP         4688         (52)         (33.6)         (32.6)         (32.8)         (25.8)         (33.3)         (20.1)         (25.8)         (35.3)         (20.1)         (21.7)           KL         (12.4)         (7.7)         46         245         694         26         269         345         21         320           SLG         409         100         259         270         189         323         235         765         369         408           KLG         491         346         229         925         405         353         765         369         408           KLG         (28.5)         (28.2)         (28.2)         (28.2)         (28.2)         (28.1)         (28.1)         (28.1)         (28.1)         (28.1)         (28.1)         (28.1)         (28.1)         (28.1)         (28.1)         (28.1)         (28.1)         (28.1)         (28.1)         (28.1)                                                                                                    |          |         |       |       |        |       | . ,     |        |       | . ,    |
| PP         413         58         377         370         35         293         414         23         294           IPH         149         87         129         148         123         197         188         181         288           IPH         124         (7.2)         (10.8)         (12.2)         (10.1)         (16.2)         (14.2)         (13.7)         (21.7)           KL         727         46         245         694         26         269         345         21         320           SLG         409         190         259         270         189         232         257         116         219           KLG         491         346         229         925         405         353         765         309         408           KLG         2283         (168)         (11.1)         (40.6)         (17.8)         (14.1)         115         140         62           MLK         10         1         30         37         7         26         45         3         101           MLK         10         1.13         30         37         7         26         45         3                                                                                                                                                                       | AS       |         |       |       |        |       |         |        |       |        |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | РР       | 413     | 58    |       | 370    |       | 293     | 414    | 23    | 294    |
| HP1         (12.4)         (7.2)         (10.8)         (12.2)         (10.1)         (16.2)         (14.2)         (13.7)         (21.7)           KL         (38.2)         (2.4)         (12.9)         (32.4)         (12.9)         (12.4)         (17.4)         (1.1)         (16.1)         (17.4)         (1.1)         (16.1)         (17.4)         (1.1)         (16.1)         (17.4)         (1.1)         (16.1)         (17.4)         (1.1)         (16.1)         (17.4)         (1.1)         (16.8)         (11.1)         (16.8)         (11.1)         (16.8)         (11.1)         (16.8)         (11.1)         (16.8)         (11.1)         (16.8)         (11.1)         (16.8)         (11.1)         (16.8)         (11.1)         (16.8)         (11.1)         (16.8)         (11.1)         (16.8)         (11.1)         (16.8)         (11.1)         (16.8)         (11.1)         (16.8)         (11.1)         (11.8)         (12.8)         (11.1)         (12.8)         (11.1)         (11.8)         (11.1)         (11.8)         (11.1)         (11.8)         (11.1)         (11.1)         (11.1)         (11.1)         (11.1)         (11.1)         (11.1)         (11.1)         (11.1)         (11.1)         (11.1)         (11.1)         (11 |          | · · · · |       |       | . ,    |       |         |        |       |        |
| KL         (38.2)         (2.4)         (12.9)         (32.4)         (1.2)         (12.6)         (17.4)         (1.1)         (16.1)           SLG         409         190         259         270         189         232         257         116         219           KLG         491         346         229         925         405         333         765         309         408           SBN         134         113         95         289         130         141         115         140         62           (28.5)         (28.2)         (20.2)         (53.6)         (24.1)         (26.2)         (21.2)         (25.3)         (11.1)         406         (24.1)         (26.2)         (21.2)         (25.3)         (11.1)         406         (26.2)         (21.2)         (25.3)         (11.1)         40.2         (26.2)         (21.2)         (25.3)         (11.1)         (18.7)         (26.1)         (21.1)         (20.2)         (40.1)         (22.6)         (11.8)         (31.1)         (12.2)         (13.1)         (22.1)         (23.1)         (23.1)         (24.1)         (23.0)         (13.8)         (21.7)         (21.3)         (14.1)         (21.3)         (21.1)                                                                     | IPH      |         |       |       |        |       |         |        |       |        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | KL       |         |       |       |        |       |         |        |       |        |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SIC      |         |       |       |        |       |         |        |       |        |
| KLG         (23.8)         (16.8)         (11.1)         (40.6)         (17.8)         (15.5)         (35.0)         (14.1)         (18.7)           SBN         (28.5)         (28.2)         (20.2)         (53.6)         (24.1)         (26.2)         (21.2)         (25.8)         (11.4)           MLK         10         1         30         37         7         26         45         3         101           (0.6)         (0.1)         (1.8)         (2.6)         (0.5)         (1.8)         (31.4)         (2.5)         (7.1)           JB         557         95         465         510         68         391         542         91         340           (28.9)         (13.0)         (21.5)         (23.9)         (13.8)         (21.7)         (21.3)         (14.1)         (21.4)           KT         11         3         55         7         3         53         5         0         31           (12.0)         (13.0)         (21.5)         (5.7)         (14.4)         (12.3)         (16.0)         (17.5)         (4.5)         (4.6)         (4.6)         (2.6)           KT         122         9         48         121                                                                                                                               | JLG      |         | . ,   | . ,   |        | ( )   | · · ·   | . ,    | · · · | · · ·  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | KLG      |         |       |       |        |       |         |        |       |        |
| SbN         (28.5)         (28.2)         (20.2)         (53.6)         (24.1)         (26.2)         (21.2)         (25.8)         (11.4)           MLK         10         1         30         37         7         26         45         3         101           MLK         (0.6)         (0.1)         (1.8)         (26.6)         (0.5)         (1.8)         (3.1)         (0.2)         (7.1)           JB         557         95         465         510         68         391         542         91         340           KTN         201         109         180         254         146         230         212         147         221           KT         11         3         55         7         3         53         5         0         31           KB         168         241         234         92         221         198         202         137         209           KCH         122         9         48         121         8         63         46         7         30           KK         348         293         243         226         139         230         222         107 <td< td=""><td></td><td>· · · ·</td><td>. ,</td><td>. ,</td><td>· · ·</td><td>. ,</td><td></td><td></td><td>. ,</td><td></td></td<>                                         |          | · · · · | . ,   | . ,   | · · ·  | . ,   |         |        | . ,   |        |
| MLK         (0.6)         (0.1)         (1.8)         (2.6)         (0.5)         (1.8)         (3.1)         (0.2)         (7.1)           JB         557         95         465         510         68         391         542         91         340           KTN         201         109         180         223         (4.0)         (23.2)         (31.6)         (5.3)         (19.8)           KTN         201         11         3         55         7         3         53         5         0         31           (0.9)         (0.3)         (4.7)         (0.6)         (0.3)         (4.5)         (0.4)         (0.0)         (22.2)           KB         168         241         234         92         232         198         202         137         209           KCH         122         9         48         121         8         63         46         7         30           KK         348         293         243         226         139         230         222         107         222           KK         348         293         243         226         139         230         (24.0)         (1                                                                                                                                                            | SBN      |         |       |       |        |       |         |        |       |        |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MLK      |         |       |       |        |       |         |        |       |        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IB       |         |       |       | 510    |       |         | 542    |       | 340    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JD       | . ,     | . ,   |       |        | . ,   |         |        |       |        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | KTN      |         |       |       |        |       |         |        |       |        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | · · · · | , ,   |       |        | . ,   |         |        |       |        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | KT       |         |       |       |        |       |         |        |       |        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | KB       | 168     | 241   | 234   | 92     | 232   | 198     | 202    | 137   | 209    |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |         |       |       |        |       |         |        |       |        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | КСН      |         |       |       |        |       |         |        |       |        |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | КК       |         |       |       |        |       |         |        |       |        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | . ,     | . ,   |       |        |       |         |        |       |        |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SP       |         |       |       |        |       |         |        |       |        |
| Image: Normal basis(13.0)(13.0)(13.0)(13.3)(13.8)(17.2)(13.1)(14.8)(14.3)MUR16444510963756923(2.4)(6.5)(6.7)(1.7)(16.0)(6.2)(0.8)(11.3)(3.8)TI245386827780280(6.0)(1.2)(9.5)(16.8)(0.5)(19.0)(18.9)(0.5)(18.9)TPG6501899249371082991874(48.2)(1.3)(7.3)(21.1)(3.1)(9.1)(26.6)(1.6)(6.6)SJ9729721321973861992(23.5)(7.0)(17.5)(32.6)(4.7)(18.0)(18.1)(4.0)(19.4)KJG81231633643366(2.5)(0.3)(7.2)(5.6)(1.1)(12.7)(9.3)(0.6)(14.2)KGR11036210456(3.4)(0.0)(0.9)(1.8)(0.6)(2.9)(1.1)(1.4)(1.7)SJMC1297333(9.3)(1.8)(18.8)(7.4)(4.1)(15.2)(10.5)(6.5)(14.4)KGR1422277208219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PJY      |         |       |       |        |       |         |        |       |        |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -        |         |       |       |        |       |         |        |       |        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MUR      |         |       |       |        |       |         | -      |       |        |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TT       |         |       | . ,   |        | , ,   |         | . ,    |       |        |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11       | (6.0)   | . ,   | . ,   |        | (0.5) | (19.0)  | . ,    | (0.5) | (18.9) |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TPG      |         |       |       |        |       |         |        |       |        |
| KJG         8         1         23         16         3         36         43         3         66           (2.5)         (0.3)         (7.2)         (5.6)         (1.1)         (12.7)         (9.3)         (0.6)         (14.2)           KGR         11         0         3         6         2         10         4         5         6           (3.4)         (0.0)         (0.9)         (1.8)         (0.6)         (2.9)         (1.1)         (1.4)         (1.7)           SJMC         12         9         7         3         3         3         -         -         -         -           TML         56         11         112         62         34         127         87         54         119           TML         56         11         112         62         34         127         87         54         119           (9.3)         (1.8)         (18.8)         (7.4)         (4.1)         (15.2)         (10.5)         (6.5)         (14.4)           ICD         142         22         77         208         21         95         252         15         98                                                                                                                                                                                                 | SJ       | 97      | 29    | 72    | 132    | 19    | 73      | 86     | 19    | 92     |
| KGR         11         0         3         6         2         10         4         5         6           KGR         11         0         3         6         2         10         4         5         6           (3.4)         (0.0)         (0.9)         (1.8)         (0.6)         (2.9)         (1.1)         (1.4)         (1.7)           SJMC         12         9         7         3         3         3         -         -         -         -           TML         56         11         112         62         34         127         87         54         119           (9.3)         (1.8)         (18.8)         (7.4)         (4.1)         (15.2)         (10.5)         (6.5)         (14.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | KIG      | 8       | 1     | 23    | 16     | 3     | 36      | 43     | 3     | 66     |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.90     |         |       |       |        |       | · · · · |        |       | . ,    |
| SJMC         (0.9)         (0.7)         (0.5)         (0.3)         (0.3)         (0.3)         (0.3)           TML         56         11         112         62         34         127         87         54         119           (9.3)         (1.8)         (18.8)         (7.4)         (4.1)         (15.2)         (10.5)         (6.5)         (14.4)           IMD         142         22         77         208         21         95         252         15         98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | KGR      |         | (0.0) | (0.9) |        | (0.6) | (2.9)   |        |       |        |
| TML $56$ 11112 $62$ $34$ $127$ $87$ $54$ $119$ $(9.3)$ $(1.8)$ $(18.8)$ $(7.4)$ $(4.1)$ $(15.2)$ $(10.5)$ $(6.5)$ $(14.4)$ $142$ $22$ $77$ $208$ $21$ $95$ $252$ $15$ $98$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SJMC     |         |       |       |        |       |         | -      | -     | -      |
| 142 22 77 208 21 95 252 15 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TML      | 56      | 11    | 112   | 62     | 34    | 127     |        |       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | КР       |         |       |       |        |       |         |        |       |        |

# Table 20 :Severe sepsis, ARDS and AKI within 24hrs of ICU admission,<br/>by individual hospital 2013 - 2015

| SMJ     | 2              | 1             | 2              | 0              | 0             | 1              | 0              | 0             | 0              |
|---------|----------------|---------------|----------------|----------------|---------------|----------------|----------------|---------------|----------------|
| 51015   | (0.5)          | 0.3)          | (0.5)          | (0.0)          | (0.0)         | (0.2)          | (0.0)          | (0.0)         | (0.0)          |
| BP      | 75<br>(16.4)   | 8<br>(1.7)    | 42<br>(9.2)    | 56<br>(12.2)   | 15<br>(3.3)   | 57<br>(12.4)   | 40<br>(7.3)    | 8<br>(1.5)    | 77<br>(14.1)   |
| TW      | 30             | 45            | 54             | 49             | 32            | 29             | 82             | 21            | 57             |
|         | (6.7)          | (10.0)        | (12.1)         | (9.8)          | (6.4)         | (5.8)          | (18.5)         | (4.7)         | (12.8)         |
| MRI     | 78<br>(16.2)   | 6<br>(1.2)    | 35<br>(7.3)    | 53<br>(12.4)   | 10<br>(2.3)   | 66<br>(15.4)   | 61<br>(16.2)   | 4<br>(1.1)    | 86<br>(22.9)   |
| KLM     | 70             | 36            | 47             | 96             | 48            | 75             | 81             | 31            | 90             |
| KLIVI   | (12.5)         | (6.4)         | (8.4)          | (17.3)         | (8.6)         | (13.5)         | (15.4)         | (5.9)         | (17.1)         |
| SDG     | 75             | 117           | 141            | 111            | 24            | 193            | 94<br>(12.4)   | 23            | 132<br>(17 E)  |
|         | (8.8)<br>72    | (13.8)<br>47  | (16.6)<br>82   | (13.3)<br>68   | (2.9)         | (23.1)<br>80   | (12.4)<br>196  | (3.0)<br>75   | (17.5)<br>161  |
| SB      | (14.3)         | (9.3)         | (16.2)         | (15.8)         | (7.7)         | (18.6)         | (15.4)         | (5.9)         | (12.7)         |
| DKS     | 100            | 48            | 65             | 37             | 12            | 45             | 101            | 46            | 69             |
|         | (10.4)         | (5.0)         | (6.8)          | (3.9)          | (1.3)         | (4.7)          | (10.9)         | (5.0)         | (7.5)          |
| SI      | 275<br>(28.6)  | 116<br>(12.1) | 156<br>(16.2)  | 319<br>(28.6)  | 62<br>(5.6)   | 219<br>(19.7)  | 364<br>(25.0)  | 96<br>(6.6)   | 333<br>(22.9)  |
| CDI     | 160            | 92            | 321            | 457            | 423           | 521            | 173            | 55            | 479            |
| SBL     | (8.3)          | (4.8)         | (16.8)         | (20.0)         | (18.6)        | (22.9)         | (7.5)          | (2.4)         | (20.7)         |
| AMP     | 235            | 120           | 126            | 226            | 139           | 145            | 258            | 119           | 109            |
| 2 11011 | (41.5)         | (21.2)        | (22.3)         | (35.7)         | (22.0)        | (22.9)         | (38.5)         | (17.8)        | (16.3)         |
| LIK     | 5<br>(1.0)     | 11<br>(2.1)   | 8<br>(1.6)     | 7<br>(2.0)     | 8<br>(2.3)    | 4<br>(1.1)     | 10<br>(6.5)    | 3<br>(2.0)    | 10<br>(6.5)    |
|         | 225            | 99            | 210            | 475            | 126           | 270            | 319            | 89            | 238            |
| UMMC    | (25.9)         | (11.4)        | (24.1)         | (35.4)         | (9.4)         | (20.1)         | (24.7)         | (6.9)         | (18.4)         |
| LKW     | 21             | 10            | 17             | 19             | 13            | 31             | 18             | 6             | 34             |
|         | (11.7)         | (5.6)         | (9.4)          | (11.6)         | (7.9)         | (18.9)         | (9.3)          | (3.1)         | (17.6)         |
| BM      | 17<br>(11.1)   | 3<br>(2.0)    | 6<br>(4.0)     | 16<br>(11.5)   | 13<br>(9.4)   | 21<br>(15.1)   | 72<br>(33.2)   | 24<br>(11.1)  | 70<br>(32.1)   |
|         | 40             | 15            | 45             | 80             | 72            | 103            | 58             | 47            | 69             |
| SLR     | (17.9)         | (6.7)         | (20.2)         | (35.9)         | (32.4)        | (46.2)         | (29.0)         | (23.5)        | (34.5)         |
| PD      | 16             | 1             | 38             | 1              | 0             | 5              | 2              | 2             | 2              |
| 10      | (6.5)          | (0.4)         | (15.5)         | (0.4)          | (0.0)         | (1.9)          | (0.9)          | (0.9)         | (0.9)          |
| KKR     | 64<br>(26.9)   | 59<br>(24.9)  | 39<br>(16.3)   | 82<br>(31.8)   | 90<br>(34.7)  | 40<br>(15.6)   | 49<br>(12.6)   | 41<br>(10.5)  | 24<br>(6.2)    |
|         | 24             | 16            | 37 (           | 29             | 20            | 33             | 66             | 53            | 59             |
| SGT     | (15.1)         | (10.1)        | 23.4)          | (19.3)         | 13.3)         | (22.1)         | (22.8)         | (18.3)        | (20.3)         |
| TM      | 21<br>(16.5)   | 15<br>(11.8)  | 16<br>(12.7)   | 15<br>(9.4)    | 44<br>(27.5)  | 17<br>(10.6)   | 26<br>(8.5)    | 22<br>(7.2)   | 44<br>(14.3)   |
|         | 12             | 4             | 6              | 5              | 4             | 8              | 23             | 12            | 13             |
| KEM     | (11.4)         | (3.8)         | (5.8)          | (5.5)          | (4.4)         | (8.9)          | (12.8)         | (6.2)         | (7.3)          |
| KLP     | 10             | 3             | 21             | 10             | 2             | 10             | 4              | 1             | 28             |
|         | (8.6)          | (2.6)         | (18.1)         | (10.5)         | (2.1)         | (10.5)         | (3.7)          | (0.9)         | (26.2)         |
| LAB     | 28<br>(17.0)   | 23<br>(14.0)  | 25<br>(15.2)   | 46<br>(27.7)   | 70<br>(42.2)  | 42<br>(25.3)   | 32<br>(17.5)   | 31<br>(16.9)  | 49<br>(26.8)   |
| KENI    | 31             | 6             | 36             | 36             | 5             | 39             | 22             | 4             | 27             |
| KEN     | (19.3)         | (3.7)         | (22.4)         | (25.0)         | (3.5)         | (27.1)         | (16.2)         | (2.9)         | (19.9)         |
| BIN     | 96<br>(36.9)   | 4 2<br>(16.2) | 43<br>(16.5)   | 188<br>(66.7)  | 68<br>(24.0)  | 70<br>(24.8)   | 73<br>(23.3)   | 54<br>(17.4)  | 79<br>(25.3)   |
|         | 46             | 37            | 56             | 49             | 49            | 64             | 22             | 12            | 31             |
| LD      | (19.2)         | (15.4)        | (23.2)         | (22.7)         | (22.7)        | (29.5)         | (14.7)         | (8.0)         | (20.8)         |
| Total   | 7171<br>(19.2) | 3039<br>(8.1) | 5129<br>(13.7) | 7761<br>(20.0) | 3406<br>(8.8) | 5920<br>(15.2) | 6932<br>(17.5) | 2568<br>(6.5) | 6077<br>(15.4) |

During the first 24 hours of ICU admission, 17.5%, 6.5% and 15.4% of patients had severe sepsis, acute respiratory distress syndrome and acute kidney injury respectively. The rates appear to follow a similar trend over the past three years.

In the Sepsis Occurrence in Acutely Ill Patients (SOAP) study, 24% of patients had sepsis on admission [5]. An Italian study in 2011 demonstrated that 42.7% of patients had AKI within 24 hours of ICU admission [6].

|          | SAPS II score mean (median) |      |      |      |             |  |  |  |
|----------|-----------------------------|------|------|------|-------------|--|--|--|
| Hospital | 2011                        | 2012 | 2013 | 2014 | 2015        |  |  |  |
| AS       | 39.4                        | 40.1 | 39.4 | 41.0 | 38.0 (36.0) |  |  |  |
| PP       | 38.0                        | 36.5 | 35.8 | 36.1 | 39.0 (37.0) |  |  |  |
| IPH      | 33.0                        | 32.0 | 34.0 | 34.2 | 33.8 (31.0) |  |  |  |
| KL       | 38.3                        | 38.9 | 40.4 | 36.8 | 37.6 (36.0) |  |  |  |
| SLG      | 34.5                        | 36.0 | 35.7 | 34.2 | 29.8 (27.0) |  |  |  |
| KLG      | 38.2                        | 36.9 | 35.3 | 33.1 | 33.3 (31.0) |  |  |  |
| SBN      | 39.2                        | 39.2 | 37.3 | 35.0 | 32.6 (31.0) |  |  |  |
| MLK      | 33.4                        | 36.8 | 31.8 | 33.5 | 34.4 (31.0) |  |  |  |
| JB       | 39.1                        | 40.7 | 31.8 | 40.2 | 41.7 (40.0) |  |  |  |
| KTN      | 34.5                        | 39.8 | 38.6 | 37.1 | 36.6 (35.0) |  |  |  |
| KT       | 39.0                        | 41.5 | 42.0 | 40.2 | 40.8 (38.5) |  |  |  |
| KB       | 33.4                        | 34.4 | 34.3 | 29.6 | 32.8 (31.0) |  |  |  |
| КСН      | 35.0                        | 33.0 | 33.7 | 31.4 | 33.1 (29.0) |  |  |  |
| KK       | 36.4                        | 33.2 | 35.1 | 40.6 | 43.9 (44.0) |  |  |  |
| SP       | 40.1                        | 43.3 | 39.7 | 37.9 | 33.9 (31.0) |  |  |  |
| РЈҮ      | 28.7                        | 28.0 | 29.5 | 32.0 | 27.7 (23.0) |  |  |  |
| MUR      | 37.9                        | 37.6 | 38.4 | 39.8 | 39.2 (37.0) |  |  |  |
| TI       | 41.7                        | 41.1 | 43.7 | 43.0 | 37.2 (34.0) |  |  |  |
| TPG      | 42.2                        | 40.4 | 39.7 | 39.4 | 41.0 (40.0) |  |  |  |
| SJ       | 40.3                        | 38.9 | 41.9 | 38.3 | 43.7 (45.0) |  |  |  |
| KJG      | 36.0                        | 31.7 | 32.9 | 31.7 | 28.4 (26.0) |  |  |  |
| KGR      | 33.9                        | 35.3 | 36.6 | 30.9 | 31.3 (28.5) |  |  |  |
| SJMC     | 18.0                        | 18.8 | 18.6 | 16.6 | -           |  |  |  |
| TML      | 37.3                        | 34.5 | 31.5 | 33.7 | 33.9 (32.0) |  |  |  |
| КР       | 40.0                        | 41.2 | 39.9 | 37.3 | 34.7 (32.0) |  |  |  |
| SMJ      | 38.8                        | 40.0 | 40.5 | 39.8 | 36.7 (34.0) |  |  |  |
| BP       | 43.3                        | 43.4 | 40.1 | 41.0 | 35.8 (33.0) |  |  |  |
| TW       | 40.0                        | 41.4 | 38.8 | 33.1 | 33.1 (29.0) |  |  |  |
| MRI      | 34.9                        | 35.5 | 35.6 | 35.6 | 37.1 (37.0) |  |  |  |
| KLM      | 42.8                        | 42.7 | 44.6 | 45.0 | 44.6 (41.0) |  |  |  |
| SDG      | 37.6                        | 41.9 | 40.8 | 40.9 | 39.8 (44.0) |  |  |  |
| SB       | 39.2                        | 40.4 | 43.9 | 41.7 | 35.0 (33.0) |  |  |  |
| DKS      | 41.3                        | 38.0 | 39.3 | 37.7 | 36.5 (34.0) |  |  |  |
| SI       | 38.3                        | 38.1 | 38.4 | 33.2 | 34.0 (33.0) |  |  |  |
| SBL      | 37.6                        | 39.1 | 31.5 | 34.4 | 38.3 (40.0) |  |  |  |
| AMP      | 46.5                        | 48.6 | 45.9 | 45.9 | 44.6 (43.5) |  |  |  |
| LIK      | 21.6                        | 21.1 | 15.2 | 15.5 | 21.3 (17.0) |  |  |  |
| UMMC     | -                           | 36.5 | 36.5 | 37.4 | 37.8 (35.0) |  |  |  |
| LKW      | -                           | 41.2 | 29.3 | 39.2 | 44.9 (45.0) |  |  |  |
| BM       | -                           | 42.8 | 47.5 | 54.4 | 54.7 (55.5) |  |  |  |
| SLR      | -                           | 47.9 | 38.8 | 46.5 | 46.1 (47.0) |  |  |  |

### Table 21 :SAPS II score, by individual hospital 2011 - 2015

| Total | 36.1 | 37.3 | 36.5 | 36.3 | 36.8 (35.0) |
|-------|------|------|------|------|-------------|
| LD    | -    | 48.8 | 43.3 | 45.1 | 44.9 (45.0) |
| BIN   | -    | 33.5 | 32.4 | 36.6 | 39.4 (36.0) |
| KEN   | -    | 44.9 | 34.3 | 37.3 | 32.6 (31.0) |
| LAB   | -    | 40.0 | 45.7 | 56.3 | 43.7 (43.0) |
| KLP   | -    | 8.4  | 26.9 | 29.7 | 30.9 (26.0) |
| KEM   | -    | 39.2 | 38.7 | 38.3 | 38.8 (39.0) |
| ТМ    | -    | 25.3 | 35.9 | 39.6 | 41.4 (38.0) |
| SGT   | -    | 39.9 | 43.8 | 45.1 | 43.9 (40.0) |
| KKR   | -    | 36.0 | 44.0 | 44.3 | 43.2 (39.0) |
| PD    | -    | 31.3 | 33.8 | 28.3 | 32.1 (27.0) |

The average SAPS II score has remained the same over the past five years. The average SAPS II score in MOH hospitals for 2015 was 36.8; which carries predicted in-hospital mortality of 30.4% [8].

| Hospital | SOFA score<br>Mean (Median) |         |         |         |            |  |  |  |
|----------|-----------------------------|---------|---------|---------|------------|--|--|--|
|          | 2011                        | 2012    | 2013    | 2014    | 2015       |  |  |  |
| AS       | 7.3 (7)                     | 7.3 (7) | 7.1 (7) | 7.4 (7) | 6.8 (7.0)  |  |  |  |
| PP       | 6.2 (5)                     | 6.7 (6) | 6.9 (6) | 7.1 (7) | 7.3 (7.0)  |  |  |  |
| IPH      | 5.4 (5)                     | 5.4 (5) | 5.9 (5) | 6.1 (5) | 6.2 (5.0)  |  |  |  |
| KL       | 6.5 (6)                     | 7.0 (7) | 7.2 (7) | 6.9 (6) | 7.1 (7.0)  |  |  |  |
| SLG      | 6.5 (6)                     | 6.7 (6) | 6.8 (6) | 6.6 (6) | 6.3 (6.0)  |  |  |  |
| KLG      | 7.5 (7)                     | 7.4 (7) | 7.0 (7) | 6.7 (6) | 6.7 (6.0)  |  |  |  |
| SBN      | 7.1 (7)                     | 7.0 (7) | 7.3 (7) | 6.7 (6) | 6.8 (6.0)  |  |  |  |
| MLK      | 5.6 (5)                     | 6.1 (6) | 5.1 (4) | 4.6 (4) | 4.9 (4.0)  |  |  |  |
| JB       | 7.2 (7)                     | 7.4 (7) | 7.6 (7) | 7.3 (7) | 8.0 (8.0)  |  |  |  |
| KTN      | 5.9 (5)                     | 7.0 (7) | 7.0 (6) | 6.3 (6) | 5.9 (5.0)  |  |  |  |
| KT       | 6.1 (6)                     | 6.6 (6) | 6.8 (7) | 6.6 (6) | 7.0 (7.0)  |  |  |  |
| KB       | 5.1 (4)                     | 5.3 (4) | 5.5 (5) | 4.6 (4) | 5.6 (5.0)  |  |  |  |
| КСН      | 6.0 (5)                     | 5.4 (4) | 5.7 (5) | 5.0 (4) | 5.7 (5.0)  |  |  |  |
| KK       | 6.0 (6)                     | 5.7 (5) | 6.2 (6) | 6.7 (6) | 7.2 (6.0)  |  |  |  |
| SP       | 6.9 (6)                     | 6.8 (6) | 7.0 (6) | 7.3 (7) | 6.6 (6.0)  |  |  |  |
| РЈҮ      | 4.1 (3)                     | 4.2 (3) | 5.0 (4) | 5.1 (4) | 4.2 (3.0)  |  |  |  |
| MUR      | 5.9 (6)                     | 5.5 (5) | 5.5 (5) | 6.0 (5) | 5.8 ( 5.0) |  |  |  |
| TI       | 7.3 (7)                     | 7.4 (7) | 7.8 (7) | 8.1 (7) | 7.9 (7.0)  |  |  |  |
| TPG      | 7.6 (8)                     | 7.1 (7) | 6.8 (6) | 7.0 (7) | 7.5 (7.0)  |  |  |  |
| SJ       | 6.6 (6)                     | 6.2 (6) | 7.3 (7) | 6.2 (5) | 6.3 (6.0)  |  |  |  |
| KJG      | 7.3 (7)                     | 5.6 (5) | 6.1 (5) | 6.1 (6) | 6.0 (5.0)  |  |  |  |
| KGR      | 5.5 (4)                     | 5.5 (5) | 5.6 (5) | 4.7 (4) | 4.9 (4.0)  |  |  |  |
| SJMC     | 1.4 (0)                     | 1.4 (0) | 1.1 (0) | 1.4 (1) | -          |  |  |  |
| TML      | 6.2 (5)                     | 6.1 (5) | 5.1 (4) | 5.9 (5) | 6.3 (6.0)  |  |  |  |
| KP       | 7.3 (7)                     | 7.3 (7) | 6.6 (6) | 6.5 (6) | 6.1 (6.0)  |  |  |  |
| SMJ      | 6.9 (7)                     | 7.3 (7) | 7.1 (7) | 7.4 (7) | 7.2 (7.0)  |  |  |  |
| BP       | 6.9 (6)                     | 7.1 (7) | 6.4 (6) | 6.4 (6) | 4.9 (4.0)  |  |  |  |
| TW       | 7.2 (6)                     | 7.2 (6) | 7.4 (7) | 6.2 (5) | 6.4 (6.0)  |  |  |  |
| MRI      | 5.5 (5)                     | 5.9 (6) | 5.8 (5) | 5.0 (4) | 6.9 (7.0)  |  |  |  |
| KLM      | 8.5 (8)                     | 7.8 (7) | 7.3 (7) | 7.1 (7) | 7.5 (7.0)  |  |  |  |
| SDG      | 6.5 (6)                     | 7.2 (7) | 7.2 (7) | 7.6 (7) | 8.3 (8.0)  |  |  |  |
| SB       | 7.8(7)                      | 7.6 (7) | 7.3 (7) | 7.3 (7) | 6.1 (5.0)  |  |  |  |
| DKS      | 6.5 (6)                     | 5.8 (5) | 5.5 (4) | 5.2 (4) | 6.0 (5.0)  |  |  |  |
| SI       | 6.5 (6)                     | 6.8 (6) | 6.1 (5) | 5.7 (5) | 6.5 (6.0)  |  |  |  |
| SBL      | 7.0 (8)                     | 7.3 (8) | 7.0 (7) | 7.7 (7) | 7.8 (8.0)  |  |  |  |
| AMP      | 8.8 (9)                     | 8.9 (9) | 8.5 (8) | 8.2 (8) | 8.5 (8.0)  |  |  |  |
| LIK      | 2.2 (1)                     | 2.6 (1) | 1.6 (0) | 1.5 (0) | 2.4 (1.0)  |  |  |  |
| UMMC     | -                           | 7.6 (7) | 7.4 (6) | 7.0 (6) | 7.1 (7.0)  |  |  |  |
| LKW      | -                           | 5.7 (5) | 3.4 (0) | 5.0 (3) | 6.9 (7.0)  |  |  |  |

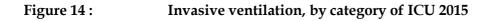
# Table 22 :Sequential Organ Failure Assessment (SOFA) [4] by individual hospital<br/>2011 - 2015

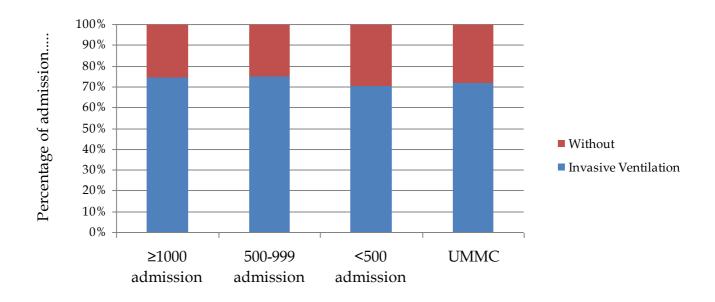
| BM      | -       | 9.5 (10) | 6.8 (6) | 8.8 (8) | 9.0 (9.0) |
|---------|---------|----------|---------|---------|-----------|
| SLR     | -       | 7.9 (8)  | 6.5 (6) | 7.6 (8) | 8.1 (8.0) |
| PD      | -       | 4.7 (4)  | 4.9 (4) | 4.1 (3) | 5.5 (4.0) |
| KKR     | -       | 6.8 (6)  | 7.5 (7) | 6.6 (6) | 4.6 (4.0) |
| SGT     | -       | 6.4 (6)  | 6.6 (6) | 7.2 (7) | 8.5 (8.0) |
| ТМ      | -       | 3.1 (3)  | 6.2 (5) | 6.6 (6) | 6.8 (6.0) |
| KEM     | -       | 6.0 (5)  | 6.5 (6) | 5.8 (4) | 6.8 (6.0) |
| KLP     | -       | 0.8 (1)  | 3.7 (3) | 4.3 (3) | 4.8 (4.0) |
| LAB     | -       | 4.2 (2)  | 5.9 (6) | 7.9 (8) | 6.3 (6.0) |
| KEN     | -       | 5.9 (5)  | 6.1 (6) | 6.0 (6) | 5.2 (4.0) |
| BIN     | -       | 5.7 (5)  | 4.9 (4) | 6.2 (5) | 6.3 (6.0) |
| LD      | -       | 8.7 (9)  | 7.5 (7) | 8.0 (8) | 6.8 (6.0) |
| Overall | 6.2 (6) | 6.4 (6)  | 6.4 (6) | 6.4 (6) | 6.6 (6.0) |

The average SOFA score in 2015 was 6.6. BM had the highest score of 9.0 while LIK had the lowest score of 2.4.

### **SECTION C:**

### **INTERVENTIONS**


- 1. Non-invasive ventilation
- 2. Invasive ventilation
- 3. Reintubation
- 4. Tracheostomy
- 5. Renal replacement therapy
- 6. Withdrawal/Withholding therapy


## Table 23 :Invasive ventilation, non-invasive ventilation and reintubation,<br/>by category of ICU 2015

|              |                     | ICUs                   |           |        |        |  |  |  |
|--------------|---------------------|------------------------|-----------|--------|--------|--|--|--|
|              | Adm ≥ 1000<br>n (%) | Adm 500 - 999<br>n (%) | Adm < 500 | UMMC   | Total  |  |  |  |
|              |                     |                        | n (%)     | n (%)  | n (%)  |  |  |  |
| Invasive     | 18366               | 5741                   | 4264      | 929    | 29300  |  |  |  |
| ventilation  | (74.6)              | (75.2)                 | (70.6)    | (71.8) | (74.0) |  |  |  |
| Non-invasive | 4603                | 1645                   | 887       | 388    | 7523   |  |  |  |
| ventilation  | (18.7)              | (21.6)                 | (14.7)    | (30.1) | (19.0) |  |  |  |
| Reintubation | 1237                | 354                    | 200       | 85     | 1876   |  |  |  |
|              | (6.7)               | (6.2)                  | (4.7)     | (9.2)  | (6.4)  |  |  |  |

Non-invasive ventilation Reintubation Refers to the continuous use of a non-invasive ventilator for  $\geq 1$  hour during ICU stay Refers to reintubation after intended or accidental extubation

The reintubation rate for MOH hospitals was 6.3 % in 2015.





75% and 72% of ICU admissions in MOH hospitals and UMMC received invasive mechanical ventilation respectively.

Figure 15 :

Non-invasive ventilation, by category of ICU 2015

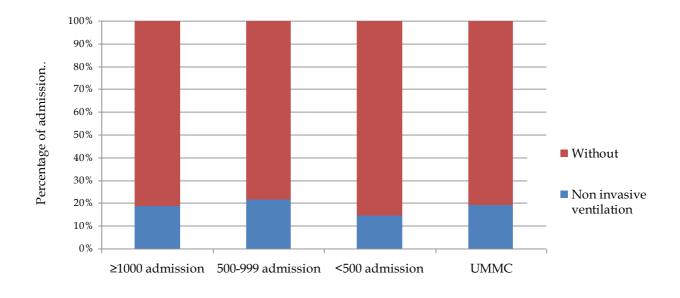
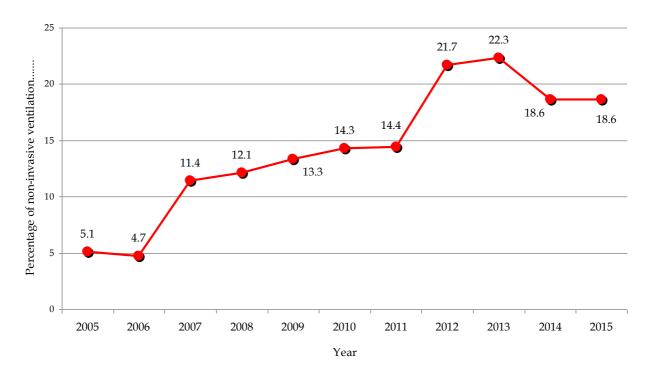




Figure 16: Non-invasive ventilation, MOH hospitals 2005 – 2015



The percentage of patients receiving non-invasive ventilation in MOH ICUs increased by almost six fold from 3.7% in 2004 to 22.3% in 2013. This percentage decreased to 18.6% in 2014 and 2015.

30% of ICU admissions in UMMC received non-invasive ventilation.

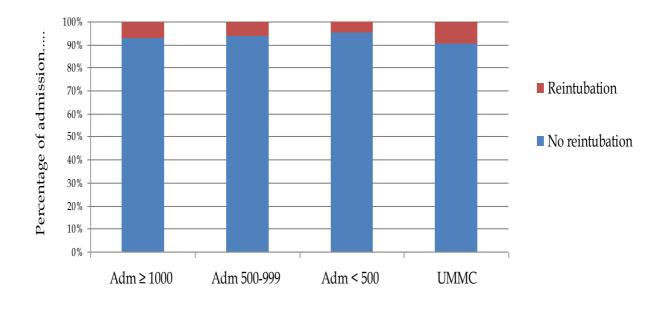
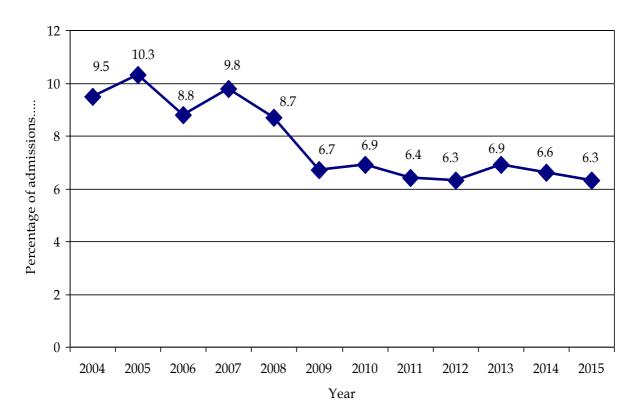




Figure 17: Reintubation, by category of ICU 2015

Figure 18 : Reintubation, MOH hospitals 2004 – 2015



The overall reintubation rate in MOH participating centres and UMMC in 2015 was 6.3% and 9.2% respectively.

| Hospital |                   |                | Mean <u>+</u> SD day | ys            |                |
|----------|-------------------|----------------|----------------------|---------------|----------------|
|          | 2011              | 2012           | 2013                 | 2014          | 2015           |
| AS       | 3.6 <u>+</u> 4.8  | $4.8\pm6.0$    | $4.1 \pm 5.5$        | $3.9 \pm 5.5$ | $3.8 \pm 5.0$  |
| PP       | 5.1 <u>+</u> 7.1  | $5.2 \pm 7.8$  | $5.4 \pm 7.0$        | $5.5 \pm 7.1$ | $5.9 \pm 8.4$  |
| IPH      | 5.3 <u>+</u> 7.2  | $5.1 \pm 6.7$  | $5.2 \pm 8.2$        | $3.8\pm6.4$   | $5.7 \pm 8.5$  |
| KL       | 3.9 <u>+</u> 5.8  | $4.5\pm7.1$    | $4.4 \pm 7.4$        | $4.6 \pm 7.1$ | $5.2 \pm 8.3$  |
| SLG      | 4.5 <u>+</u> 6.3  | $4.9\pm5.9$    | $4.3 \pm 5.4$        | $4.8\pm6.4$   | $5.7 \pm 9.0$  |
| KLG      | 2.9 <u>+</u> 4.3  | $2.7 \pm 4.5$  | $2.5 \pm 5.7$        | $2.5 \pm 3.9$ | $3.0 \pm 5.5$  |
| SBN      | 5.1 <u>+</u> 7.4  | $4.9\pm 6.8$   | $6.1 \pm 8.9$        | $5.1 \pm 7.1$ | $5.7 \pm 7.5$  |
| MLK      | 4.0 <u>+</u> 1.7  | $4.3 \pm 5.7$  | $4.6\pm6.7$          | $4.9\pm6.9$   | $4.4\pm 6.2$   |
| JB       | 4.8 <u>+</u> 6.3  | $4.9\pm6.2$    | $4.3 \pm 5.5$        | $5.1 \pm 6.6$ | $5.1 \pm 6.0$  |
| KTN      | 4.9 <u>+</u> 7.1  | $5.6\pm6.9$    | $5.0 \pm 6.5$        | $5.1\pm8.2$   | $5.7 \pm 8.7$  |
| KT       | 3.5 <u>+</u> 4.6  | $3.4 \pm 4.6$  | $3.9 \pm 4.9$        | $3.8 \pm 4.9$ | $3.5 \pm 5.8$  |
| КВ       | 3.9 <u>+</u> 7.3  | $3.6 \pm 6.3$  | $4.0\pm 6.6$         | $3.8\pm6.4$   | $5.2 \pm 11.2$ |
| КСН      | 5.4 <u>+</u> 7.4  | 5.0 ± 7.2      | $4.4\pm 6.6$         | $3.7\pm6.2$   | $4.1 \pm 6.1$  |
| КК       | 5.2 <u>+</u> 7.0  | $5.5 \pm 7.2$  | $5.9 \pm 8.8$        | $5.3 \pm 9.0$ | $6.3 \pm 13.2$ |
| SP       | 3.9 <u>+</u> 5.3  | $3.9 \pm 4.0$  | $4.3\pm5.9$          | $4.2\pm 6.2$  | $4.1 \pm 6.1$  |
| РЈҮ      | 3.3 <u>+</u> 5.5  | $3.1 \pm 4.9$  | $3.5\pm5.4$          | $3.6\pm6.9$   | $3.5 \pm 5.6$  |
| MUR      | 5.1 <u>+</u> 8.1  | $3.8\pm 6.8$   | $2.9\pm4.4$          | $3.5 \pm 5.1$ | $3.2 \pm 5.5$  |
| TI       | 3.7 <u>+</u> 5.8  | $4.0\pm8.0$    | $2.5 \pm 3.0$        | $2.4 \pm 3.0$ | $1.8 \pm 2.8$  |
| TPG      | 7.3 <u>+</u> 9.6  | $5.2 \pm 8.0$  | $4.1 \pm 5.3$        | $4.6\pm 6.8$  | $5.6 \pm 7.4$  |
| SJ       | 4.0 <u>+</u> 6.3  | $4.3 \pm 7.2$  | $6.4 \pm 9.7$        | $5.5 \pm 2.6$ | $5.0 \pm 7.2$  |
| KJG      | 4.8 <u>+</u> 15.3 | $4.9\pm7.3$    | $4.1 \pm 5.0$        | $4.5\pm5.5$   | $3.5 \pm 4.8$  |
| KGR      | 3.5 <u>+</u> 6.3  | $3.8\pm6.5$    | 3.6 ± 7.0            | $3.5 \pm 5.2$ | $3.7 \pm 4.5$  |
| SJMC     | 2.9 <u>+</u> 4.7  | $2.5\pm4.1$    | $4.8\pm5.1$          | $2.9\pm3.2$   | -              |
| TML      | 5.5 <u>+</u> 8.9  | $4.9\pm6.7$    | $4.6\pm8.2$          | $4.7\pm6.6$   | $4.8\pm 6.3$   |
| КР       | 5.6 <u>+</u> 8.2  | $5.0\pm7.5$    | $4.9\pm7.0$          | $4.3\pm5.9$   | $4.3\pm6.4$    |
| SMJ      | 3.0 <u>+</u> 4.9  | $3.2 \pm 4.1$  | $2.9\pm4.3$          | $2.6\pm4.0$   | $2.6\pm4.9$    |
| BP       | 4.4 <u>+</u> 6.1  | $5.2\pm6.4$    | $4.4\pm 6.0$         | $4.4\pm5.1$   | $3.7\pm4.5$    |
| TW       | 2.9 <u>+</u> 3.9  | $3.2 \pm 6.3$  | $4.1 \pm 6.3$        | $4.1\pm6.1$   | $3.8 \pm 7.0$  |
| MRI      | 4.6 <u>+</u> 5.3  | $4.7\pm5.4$    | $4.4\pm5.3$          | $4.2\pm5.5$   | $4.8 \pm 5.3$  |
| KLM      | 3.6 <u>+</u> 5.6  | $3.3 \pm 4.3$  | $3.2 \pm 4.8$        | $3.2\pm4.8$   | $3.9 \pm 5.4$  |
| SDG      | 4.6 <u>+</u> 6.0  | $4.5\pm5.4$    | $4.3\pm 6.1$         | $4.3\pm 6.9$  | $5.4\pm8.2$    |
| SB       | 5.1 <u>+</u> 7.0  | $5.3 \pm 9.1$  | 5.5 ± 7.7            | $6.2\pm6.8$   | $4.4\pm7.5$    |
| DKS      | 6.3 <u>+</u> 11.2 | $5.2\pm8.1$    | $4.3\pm6.2$          | $3.3 \pm 5.2$ | $5.0 \pm 8.1$  |
| SI       | 7.1 <u>+</u> 13.6 | $5.9 \pm 10.3$ | $5.5\pm8.7$          | $4.9\pm8.0$   | $4.9\pm8.1$    |
| SBL      | 6.2 <u>+</u> 7.0  | 5.7 ± 6.3      | 5.8 ±7.6             | $5.4 \pm 5.5$ | 5.1 ± 5.7      |
| AMP      | 5.1 <u>+</u> 7.7  | $4.4\pm5.9$    | $4.8 \pm 6.3$        | $4.9\pm6.6$   | $4.0 \pm 5.4$  |
| LIK      | 1.8 <u>+</u> 2.2  | 3.6±5.2        | $2.7 \pm 3.8$        | $3.2\pm6.1$   | $3.9 \pm 8.1$  |
| UMMC     | -                 | $8.1 \pm 11.4$ | $6.0 \pm 8.2$        | $6.1 \pm 8.8$ | 6.4±9.3        |
| LKW      | -                 | $4.2\pm7.6$    | $4.2\pm5.9$          | $4.1\pm4.5$   | 3.6±3.8        |

# Table 24 :Duration of invasive mechanical ventilation, by individual hospital<br/>2011 - 2015

| BM    | -                | -             | $6.2\pm9.1$   | $6.6\pm6.4$                     | $4.9\pm6.2$                     |
|-------|------------------|---------------|---------------|---------------------------------|---------------------------------|
| SLR   | -                | $5.3\pm 6.3$  | $5.7\pm8.1$   | $6.6\pm10.0$                    | $7.5\pm15.7$                    |
| PD    | -                | $2.8\pm3.4$   | $2.7\pm3.0$   | $3.9\pm9.5$                     | $3.0 \pm 3.6$                   |
| KKR   | -                | $4.8\pm6.3$   | $5.3\pm7.6$   | $5.4\pm8.0$                     | $3.6 \pm 5.1$                   |
| SGT   | -                | $4.3\pm7.1$   | $3.0 \pm 4.0$ | $2.5\pm2.5$                     | $2.4\pm2.5$                     |
| ТМ    | -                | -             | $3.7\pm4.6$   | $4.7\pm6.6$                     | $3.3 \pm 4.3$                   |
| KEM   | -                | -             | $3.1\pm2.2$   | $5.2\pm6.1$                     | $2.9\pm2.6$                     |
| KLP   | -                | -             | $2.1 \pm 4.0$ | $3.3\pm4.7$                     | $5.0\pm8.5$                     |
| LAB   | -                | $4.6\pm6.6$   | $3.8\pm5.2$   | $4.3\pm5.3$                     | $5.3\pm 6.2$                    |
| KEN   | -                | -             | $6.7\pm9.8$   | $5.2\pm5.7$                     | $4.2\pm7.7$                     |
| BIN   | -                | $6.2\pm8.3$   | $4.3\pm5.0$   | $3.9\pm4.6$                     | $3.8 \pm 5.3$                   |
| LD    | -                | $5.2\pm14.0$  | $5.4\pm6.7$   | $5.1\pm5.6$                     | $6.4\pm9.7$                     |
| Total | 4.6 <u>+</u> 7.1 | $4.5 \pm 6.8$ | $4.5\pm6.6$   | $\textbf{4.9} \pm \textbf{6.6}$ | $\textbf{4.7} \pm \textbf{7.3}$ |

The average duration of mechanical ventilation was 4.7 days in 2015.

TI had the shortest average duration of invasive mechanical ventilation at 1.8 days while SLR had the longest average duration at 7.5 days.

# Table 25 :Renal replacement therapy and modalities of therapy,<br/>by category of ICU 2015

|                               |             |             | ICUs       |            |             |
|-------------------------------|-------------|-------------|------------|------------|-------------|
|                               | Adm ≥ 1000  | Adm 500 -   | Adm < 500  | UMMC       | Total       |
|                               | (0/)        | 999         | (0/)       | (0/)       | (0/)        |
|                               | n (%)       | n (%)       | n (%)      | n (%)      | n (%)       |
| Renal                         |             |             |            |            |             |
| replacement                   | 3820 (15.5) | 1199 (15.7) | 656 (10.9) | 316 (24.5) | 5991 (15.2) |
| therapy                       |             |             |            |            |             |
|                               |             |             |            |            |             |
| Intermittent<br>haemodialysis | 2662 (62.9) | 933 (74.5)  | 554 (81.8) | 93 (27.4)  | 4242 (65.3) |
| CRRT                          | 1465 (34.6) | 306 (24.4)  | 73 (10.8)  | 245 (72.3) | 2089 (32.1) |
| Peritoneal<br>dialysis        | 102 (2.4)   | 14 (1.1)    | 50 (7.4)   | 1 (0.3)    | 167 (2.6)   |
| Total                         | 4229 (100)  | 1253 (100)  | 677 (100)  | 339 (100)  | 6498 (100)  |

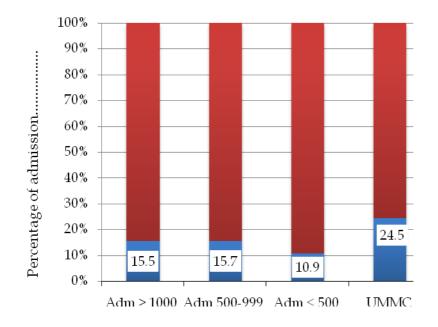
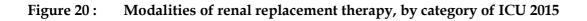
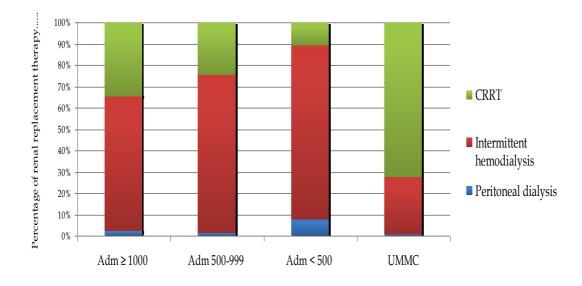




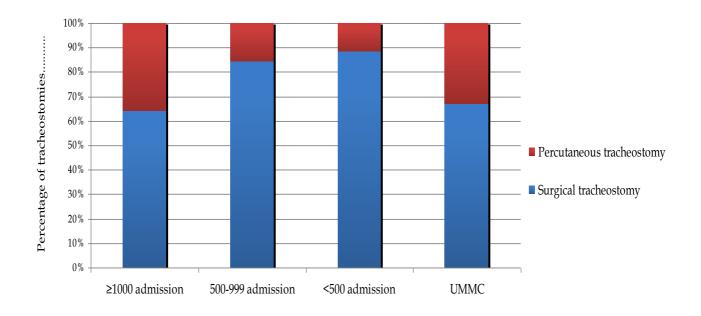

Figure 19: Renal replacement therapy, by category of ICU 2015





In MOH ICUs, 14.8% of admissions received renal replacement therapy in 2015. These patients comprise of those with acute kidney injury and chronic kidney disease.

The worldwide prevalence of acute renal replacement therapy in ICUs is approximately 4% or two thirds of those with acute kidney injury [9]. Half of patients (49.3%) admitted with acute kidney injury underwent renal replacement therapy.


Intermittent haemodialysis and continuous renal replacement therapy were the most common modalities of renal replacement therapy performed in MOH ICUs and UMMC respectively

#### Table 26 :Tracheostomy, by category of ICU 2015

|              |               | ICUs                                           |              |             |               |  |  |  |  |
|--------------|---------------|------------------------------------------------|--------------|-------------|---------------|--|--|--|--|
|              | Adm ≥ 1000    | Adm≥1000 Adm 500 - Adm < 500 UMMC Total<br>999 |              |             |               |  |  |  |  |
|              | n (%)         | n (%)                                          | n (%)        | n (%)       | n (%)         |  |  |  |  |
| Tracheostomy | 1938<br>10.6% | 455<br>7.9%                                    | 262<br>6.2%  | 85<br>9.2%  | 2740<br>9.4%  |  |  |  |  |
|              | Т             | racheostomy teo                                | chnique      |             |               |  |  |  |  |
| Surgical     | 1246<br>64.3% | 384<br>84.4%                                   | 232<br>88.5% | 57<br>67.1% | 1919<br>70.0% |  |  |  |  |
| Percutaneous | 692<br>35.7%  | 71<br>15.6%                                    | 30<br>11.5%  | 28<br>32.9% | 821<br>30.0%  |  |  |  |  |

Tracheostomy: Refers to the procedure done during ICU stay

#### Figure 21: Techniques of tracheostomy, by category of ICU 2015



In ICUs with more than 1000 admissions, 36% of tracheostomies were performed via the percutaneous technique.

In ICUs with 500 to 999 admissions and less than 500 admissions, the rates were 16% and 12% respectively.

UMMC had 33% of tracheostomies performed percutaneously.

|          | Tracheostomy       | Tracheostomy in                                     | Type of tr        | acheostomy            |
|----------|--------------------|-----------------------------------------------------|-------------------|-----------------------|
| Hospital | performed<br>n (%) | relation to days of<br>ventilation<br>mean (median) | Surgical<br>n (%) | Percutaneous<br>n (%) |
| AS       | 120 (9.6)          | 7.4 (6.2)                                           | 96 (80.0)         | 24 (20.0)             |
| PP       | 151 (15.8)         | 9.0 (8.1)                                           | 52 (34.4)         | 99 (65.6)             |
| IPH      | 150 (14.2)         | 9.4 (6.9)                                           | 89 (59.3)         | 61 (40.7)             |
| KL       | 117 (8.7)          | 10.3 (8.4)                                          | 39 (33.3)         | 78 (66.7)             |
| SLG      | 82 (8.4)           | 13.4 (11.9)                                         | 62 (75.6)         | 20 (24.4)             |
| KLG      | 97 (7.4)           | 7.7 (5.9)                                           | 30 (30.9)         | 67 (69.1)             |
| SBN      | 60 (15.3)          | 10.0 (8.9)                                          | 60 (100.0)        | 0 (0.0)               |
| MLK      | 34 (3.8)           | 12.7 (12.9)                                         | 34 (100.0)        | 0 (0.0)               |
| JB       | 234 (15.3)         | 7.7 (6.4)                                           | 71 (30.3)         | 163 (69.7)            |
| KTN      | 98 (10.8)          | 13.0 (10.3)                                         | 91 (92.9)         | 7 (7.1)               |
| KT       | 94 (8.5)           | 8.2 (5.4)                                           | 82 (87.2)         | 12 (12.8)             |
| KB       | 46 (5.1)           | 18.7 (16.4)                                         | 17 (37.0)         | 29 (63.0)             |
| КСН      | 92 (9.8)           | 8.6 (5.8)                                           | 72 (78.3)         | 20 (21.7)             |
| KK       | 82 (11.7)          | 8.1 (5.8)                                           | 55 (67.1)         | 27 (32.9)             |
| SP       | 54 (7.5)           | 11.2 (10.2)                                         | 54 (100.0)        | 0 (0.0)               |
| РЈҮ      | 34 (6.9)           | 11.0 (8.4)                                          | 34 (100.0)        | 0 (0.0)               |
| MUR      | 26 (5.1)           | 6.8 (5.4)                                           | 26 (100.0)        | 0 (0.0)               |
| TI       | 17 (5.4)           | 3.0 (2.5)                                           | 17 (100.0)        | 0 (0.0)               |
| TPG      | 93 (11.1)          | 9.1 (7.8)                                           | 93 (100.0)        | 0 (0.0)               |
| SJ       | 22 (5.7)           | 7.6 (8.0)                                           | 22 (100.0)        | 0 (15.0)              |
| KJG      | 18 (5.8)           | 6.2 (4.9)                                           | 18 (100.0)        | 0 (0.0)               |
| KGR      | 21 (8.4)           | 7.5 (5.5)                                           | 13 (61.9)         | 8 (38.1)              |
| TML      | 51 (8.1)           | 9.8 (8.5)                                           | 50 (98.0)         | 1 (2.0)               |
| KP       | 11 (2.8)           | 15.9 (14.6)                                         | 11 (100.0)        | 0 (0.0)               |
| SMJ      | 12 (4.0)           | 9.8 (4.0)                                           | 1 (8.3)           | 11 (91.7)             |
| BP       | 27 (6.1)           | 7.7 (6.4)                                           | 25 (92.6)         | 2 (7.4)               |
| TW       | 36 (10.6)          | 10.6 (6.6)                                          | 36 (100.0)        | 0 (0.0)               |
| MRI      | 28 (8.5)           | 10.1 (8.1)                                          | 26 (92.9)         | 2 (7.1)               |
| KLM      | 46 (10.5)          | 7.2 (5.7)                                           | 44 (95.7)         | 2 (4.3)               |
| SDG      | 43 (8.7)           | 12.3 (10.3)                                         | 43 (100)          | 0 (0.0)               |
| SB       | 167 (16.4)         | 4.3 (3.4)                                           | 167 (100.0)       | 0 (0.0)               |
| DKS      | 35 (5.1)           | 10.9 (10.2)                                         | 35 (100.0)        | 0 (0.0)               |
| SI       | 80 (7.8)           | 11.4 (9.3)                                          | 75 (93.8)         | 5 (6.2)               |
| SBL      | 229 (14.5)         | 9.5 (8.5)                                           | 122 (53.3)        | 107 (46.7)            |
| AMP      | 40 (7.1)           | 9.0 (6.9)                                           | 1 (2.5)           | 39 (97.5)             |
| LIK      | 4 (7.3)            | 11.3 (12.3)                                         | 4 (100.0)         | 0 (0.0)               |
| UMMC     | 85 (9.2)           | 14.9 (11.9)                                         | 57 (67.1)         | 28 (32.9)             |
| LKW      | 8 (5.0)            | 7.9 (6.1)                                           | 8 (100.0)         | 0 (0.0)               |
| BM       | 21 (10.9)          | 7.7 (3.8)                                           | 21 (100.0)        | 0 (0.0)               |
| SLR      | 6 (4.2)            | 11.7 (12.4)                                         | 5 (83.3)          | 1 (16.7)              |

### Table 27 :Tracheostomy, by individual hospital 2015

| PD    | 3 (3.9)    | 13.5 (16.6) | 2 (66.7)    | 1 (33.3)   |
|-------|------------|-------------|-------------|------------|
| KKR   | 3 (1.2)    | 1.7 (0.0)   | 3 (100.0)   | 0 (0.0)    |
| SGT   | 17 (7.4)   | 11.6 (4.1)  | 17 (100.0)  | 0 (0.0)    |
| ТМ    | 0 (0.0)    | 0 (0.0)     | 0 (0.0)     | 0 (0.0)    |
| KEM   | 12 (9.8)   | 5.4 (6.0)   | 12 (100.0)  | 0 (0.0)    |
| KLP   | 1 (1.6)    | 47.0 (47.0) | 1 (100.0)   | 0 (0.0)    |
| LAB   | 6 (5.0)    | 13.5 (11.5) | 6 (100.0)   | 0 (0.0)    |
| KEN   | 9 (10.3)   | 5.5 (4.4)   | 4 (44.4)    | 5 (55.6)   |
| BIN   | 8 (3.3)    | 13.1 (12.2) | 7 (87.5)    | 1 (12.5)   |
| LD    | 10 (7.8)   | 12.6 (9.9)  | 9 (90.0)    | 1 (10.0)   |
| Total | 2740 (9.4) | 9.4 (7.5)   | 1919 (70.0) | 821 (30.0) |

Among all invasively ventilated patients, 9.4% had tracheostomies performed.

The mean duration between the initiation of invasive ventilation and tracheostomy was 9.4 days.

## Table 28 :Total number of tracheostomies and percentage of percutaneous<br/>tracheostomies, by individual hospital 2011 - 2015

|     | Total number of tracheostomies (% percutaneous tracheostomies)<br>n (%) |            |            |            |            |  |  |
|-----|-------------------------------------------------------------------------|------------|------------|------------|------------|--|--|
|     | 2011                                                                    | 2012       | 2013       | 2014       | 2015       |  |  |
| AS  | 126 (23.0)                                                              | 150 (23.3) | 160 (23.1) | 131 (28.2) | 120 (20.0) |  |  |
| PP  | 199 (64.8)                                                              | 210 (65.7) | 196 (65.8) | 196 (72.4) | 151 (65.6) |  |  |
| IPH | 140 (2.9)                                                               | 109 (16.5) | 141 (50.4) | 161 (47.2) | 150 (40.7) |  |  |
| KL  | 128 (75.0)                                                              | 149 (75.8) | 119 (74.8) | 125 (82.4) | 117 (66.7) |  |  |
| SLG | 77 (18.2)                                                               | 102 (28.4) | 121 (28.1) | 107 (18.7) | 82 (24.4)  |  |  |
| KLG | 190 (73.7)                                                              | 155 (76.1) | 133 (75.9) | 113 (80.5) | 97 (69.1)  |  |  |
| SBN | 68 (1.5)                                                                | 55 (0.0)   | 50 (0.0)   | 40 (0.0)   | 60 (0)     |  |  |
| MLK | 100 (1.0)                                                               | 88 (0.0)   | 57 (0.0)   | 35 (0.0)   | 34 (0)     |  |  |
| ЈВ  | 465 (79.4)                                                              | 332 (73.2) | 238 (68.1) | 207 (67.1) | 234 (69.7) |  |  |
| KTN | 80 (7.5)                                                                | 112 (4.5)  | 115 (7.8)  | 117 (8.5)  | 98 (7.1)   |  |  |
| KT  | 67 (50.7)                                                               | 88 (37.5)  | 95 (38.9)  | 94 (19.1)  | 94 (12.8)  |  |  |
| KB  | 29 (24.1)                                                               | 27 (37.0)  | 40 (22.5)  | 38 (36.8)  | 46 (63.0)  |  |  |
| КСН | 63 (36.5)                                                               | 71 (23.9)  | 76 (6.6)   | 65 (3.1)   | 92 (21.7)  |  |  |
| КК  | 46 (8.7)                                                                | 104 (25.0) | 123 (14.6) | 80 (10.0)  | 82 (32.9)  |  |  |
| SP  | 23 (0)                                                                  | 11 (0.0)   | 30 (0.0)   | 46 (0.0)   | 54 (0)     |  |  |
| РЈҮ | 21 (0)                                                                  | 26 (0.0)   | 19 (5.3)   | 20 (0.0)   | 34 (0)     |  |  |
| MUR | 36 (0)                                                                  | 40 (2.5)   | 29 (0.0)   | 23 (4.3)   | 26 (0)     |  |  |
| TI  | 18 (0)                                                                  | 24 (0.0)   | 13 (0.0)   | 20 (0.0)   | 17 (0)     |  |  |
| TPG | 149 (0)                                                                 | 127 (0.8)  | 108 (0.0)  | 59 (0.0)   | 93 (0)     |  |  |
| SJ  | 61 (37.7)                                                               | 57 ( 22.8) | 42 (69.0)  | 40 (15.0)  | 22 (0)     |  |  |
| KJG | 19 (5.3)                                                                | 14 (0.0)   | 24 (0.0)   | 35 (0.0)   | 18 (0)     |  |  |

| KGR   | 7 (0)       | 19 (0.0)    | 38 (2.6)    | 12 (0.0)    | 21 (38.1)   |
|-------|-------------|-------------|-------------|-------------|-------------|
| TML   | 38 (0)      | 29 (3.4)    | 39 (0.0)    | 50 (0.0)    | 51 (2.0)    |
| KP    | 27 (0)      | 24 (0.0)    | 14 (0.0)    | 12 (0.0)    | 11 (0)      |
| SMJ   | 9 (88.9)    | 16 (75.0)   | 10 (100.0)  | 12 (91.7)   | 12 (91.7)   |
| BP    | 54 (0)      | 36 (0.0)    | 35 (0.0)    | 48 (0.0)    | 27 (7.4)    |
| TW    | 21 (0)      | 25 (0.0)    | 34 (2.9)    | 42 (0.0)    | 36 (0)      |
| MRI   | 8 (0)       | 33 (18.2)   | 22 (4.5)    | 16 (0.0)    | 28 (7.1)    |
| KLM   | 55 (0)      | 78 (0.0)    | 46 (0.0)    | 32 (0.0)    | 46 (4.3)    |
| SDG   | 52 (42.3)   | 56 (32.1)   | 64 (7.8)    | 48 (2.1)    | 43 (0)      |
| SB    | 36 (0)      | 56 (3.6)    | 52 (0.0)    | 73 (0.0)    | 167 (0)     |
| DKS   | 21 (76.2)   | 25 (80.0)   | 36 (88.9)   | 32 (12.5)   | 35 (0)      |
| SI    | 64 (26.6)   | 66 (24.2)   | 72 (9.7)    | 60 (23.3)   | 80 (6.2)    |
| SBL   | 262 (68.3)  | 206 (42.7)  | 197 (42.6)  | 192 (31.2)  | 229 (46.7)  |
| AMP   | 55 (92.7)   | 59 (93.2)   | 55 (85.5)   | 51 (96.1)   | 40 (97.5)   |
| LIK   | 1 (0)       | 5 (0.0)     | 6 (0.0)     | 2 (0.0)     | 4 (0)       |
| UMMC  |             | 76 (21.1)   | 64 (18.8)   | 93 (20.4)   | 85 (32.9)   |
| LKW   |             | 10 (0.0)    | 11 (0.0)    | 3 (0.0)     | 8 (0)       |
| BM    |             | 11 (0.0)    | 17 (17.6)   | 12 (16.7)   | 21 (0)      |
| SLR   |             | 5 (0.0)     | 7 (14.3)    | 16 (6.2)    | 6 (16.7)    |
| PD    |             | 5 (0.0)     | 5 (0.0)     | 8 (0.0)     | 3 (33.3)    |
| KKR   |             | 6 (0.0)     | 7 (0.0)     | 7 (0.0)     | 3 (0)       |
| SGT   |             | 7 (0.0)     | 10 (0.0)    | 5 (0.0)     | 17 (0)      |
| ТМ    |             | -           |             | 0 (0.0)     | 0 (0)       |
| KEM   |             | 1 (0.0)     | 1 (0.0)     | 6 (0.0)     | 12 (0)      |
| KLP   |             | -           | 1 (0.0)     | 1 (0.0)     | 1 (0)       |
| LAB   |             | 6 (0.0)     | 14 (0.0)    | 2 (0.0)     | 6 (0)       |
| KEN   |             | -           | 9 (0.0)     | 7 (14.3)    | 9 (55.6)    |
| BIN   |             | 12 (58.3)   | 12 (0.0)    | 12 (0.0)    | 8 (12.5)    |
| LD    |             | 10 (80.0)   | 21 (23.8)   | 12 (8.3)    | 10 (10.0)   |
| Total | 2821 (41.7) | 2936 (35.8) | 2831 (33.2) | 2618 (31.7) | 2740 (30.0) |

In 2015, 30.0% of all tracheostomies were performed percutaneously. The percentage of percutaneous tracheostomies had increased from 2002 until 2011. This however, decreased in trend since 2011.

| Hospital |            | Withdrawal / Withholding of therapy<br>n (%) |            |            |            |  |  |  |  |
|----------|------------|----------------------------------------------|------------|------------|------------|--|--|--|--|
|          | 2011       | 2012                                         | 2013       | 2014       | 2015       |  |  |  |  |
| AS       | 192 (66.2) | 203 (64.2)                                   | 253 (71.5) | 317 (84.3) | 257 (74.5) |  |  |  |  |
| PP       | 105 (60.7) | 191 (91.4)                                   | 133 (78.2) | 85 (42.7)  | 139 (61.0) |  |  |  |  |
| IPH      | 0 (0.0)    | 7 (4.6)                                      | 48 (23.1)  | 39 (19.8)  | 149 (55.4) |  |  |  |  |
| KL       | 230 (73.5) | 299 (83.8)                                   | 267 (80.4) | 250 (81.4) | 248 (69.5) |  |  |  |  |
| SLG      | 6 (2.9)    | 42 (20.9)                                    | 110 (54.7) | 71 (37.0)  | 150 (62.2) |  |  |  |  |
| KLG      | 162 (58.9) | 206 (63.2)                                   | 137 (49.5) | 164 (54.1) | 286 (83.6) |  |  |  |  |
| SBN      | 58 (49.2)  | 61 (52.6)                                    | 36 (38.7)  | 48 (42.9)  | 43 (43.4)  |  |  |  |  |
| MLK      | 38 (10.4)  | 22 (5.7)                                     | 58 (15.4)  | 146 (52.5) | 33 (11.2)  |  |  |  |  |
| JB       | 270 (72.8) | 278 (75.7)                                   | 332 (79.8) | 234 (83.0) | 294 (84.5) |  |  |  |  |
| KTN      | 4 (3.8)    | 9 (5.8)                                      | 11 (6.0)   | 12 (6.4)   | 10 (4.5)   |  |  |  |  |
| KT       | 82 (32.5)  | 54 (21.5)                                    | 48 (19.2)  | 23 (9.5)   | 15 (5.8)   |  |  |  |  |
| KB       | 3 (1.5)    | 48 (23.8)                                    | 33 (17.5)  | 23 (12.7)  | 83 (50.6)  |  |  |  |  |
| КСН      | 1 (0.7)    | 8 (5.4)                                      | 7 (4.2)    | 18 (11.2)  | 38 (19.7)  |  |  |  |  |
| KK       | 29 (17.9)  | 43 (22.8)                                    | 60 (30.9)  | 121 (72.5) | 102 (70.8) |  |  |  |  |
| SP       | 1 (1.1)    | 0 (0.0)                                      | 5 (3.9)    | 21 (10.0)  | 9 (5.1)    |  |  |  |  |
| РЈҮ      | 0 (0.0)    | 0 (0.0)                                      | 0 (0.0)    | 0 (0.0)    | 19 (17.8)  |  |  |  |  |
| MUR      | 4 ( 3.1)   | 33 (22.4)                                    | 38 (29.0)  | 43 (30.7)  | 43 (30.9)  |  |  |  |  |
| TI       | 0 (0.0)    | 1 (1.5)                                      | 3 (3.7)    | 2 (2.2)    | 27 (29.3)  |  |  |  |  |
| TPG      | 56 (24.1)  | 108 (43.2)                                   | 100 (43.1) | 105 (46.3) | 45 (18.8)  |  |  |  |  |
| SJ       | 53 (36.3)  | 67 (48.9)                                    | 40 (37.0)  | 13 (14.3)  | 17 (20.2)  |  |  |  |  |
| KJG      | 5 ( 8.6)   | 4 (7.7)                                      | 1 (2.0)    | 0 (0.0)    | 0 (0.0)    |  |  |  |  |
| KGR      | -          | 1 (1.8)                                      | 0 (0.0)    | 11 (19.3)  | 12 (17.9)  |  |  |  |  |
| SJMC     | 2 (2.3)    | 4 (6.5)                                      | 0 (0.0)    | 0 (0.0)    | -          |  |  |  |  |
| TML      | 2 ( 1.9)   | 4 (6.3)                                      | 9 (9.6)    | 11 (7.1)   | 1 (0.6)    |  |  |  |  |
| KP       | 21 (17.2)  | 19 (20.2)                                    | 43 (39.8)  | 41 (28.5)  | 40 (30.8)  |  |  |  |  |
| SMJ      | 31 (33.3)  | 27 (28.7)                                    | 17 (17.2)  | 21 (18.4)  | 5 (6.2)    |  |  |  |  |
| BP       | 13 (13.4)  | 11 (9.2)                                     | 28 (26.9)  | 11(12.0)   | 2 (2.3)    |  |  |  |  |
| TW       | 7 (16.3)   | 8 (14.8)                                     | 4 (6.0)    | 0 (0.0)    | 5 (6.4)    |  |  |  |  |
| MRI      | 2 (2.3)    | 9 (10.6)                                     | 7 (7.8)    | 7 (10.8)   | 27 (30.0)  |  |  |  |  |
| KLM      | 59 (44.4)  | 66 (54.5)                                    | 70 (52.6)  | 53 (40.8)  | 56 (46.7)  |  |  |  |  |
| SDG      | 53 (34.0)  | 0 (0.0)                                      | 3 (1.9)    | 1 (0.7)    | 0 (0.0)    |  |  |  |  |
| SB       | 63 (46.3)  | 58 (54.2)                                    | 51 (42.1)  | 31 (26.7)  | 160 (80.4) |  |  |  |  |
| DKS      | 10 (7.1)   | 5 (3.9)                                      | 4 (1.7)    | 23 (12.6)  | 3 (1.7)    |  |  |  |  |
| SI       | 21 (15.2)  | 11 (5.6)                                     | 11 (5.5)   | 9 (4.1)    | 68 (24.0)  |  |  |  |  |
| SBL      | 185 (83.3) | 198 (74.2)                                   | 212 (63.9) | 262 (63.0) | 232 (56.0) |  |  |  |  |
| AMP      | 8 (4.2)    | 146 (69.2)                                   | 46 (26.7)  | 21 (9.4)   | 3 (1.3)    |  |  |  |  |
| LIK      | 1 (9.1)    | 0 (0.0)                                      | 3 (14.3)   | 0 (0.0)    | 6 (60.0)   |  |  |  |  |
| UMMC     | -          | 63 (66.3)                                    | 89 (62.7)  | 156 (67.0) | 194 (80.5) |  |  |  |  |
| LKW      | -          | 11 (25.0)                                    | 8 (25.8)   | 3 (7.5)    | 47 (87.0)  |  |  |  |  |
| BM       | -          | 0 (0.0)                                      | 0 (0.0)    | 0 (0.0)    | 1 (1.9)    |  |  |  |  |

### Table 29 :Withdrawal / Withholding therapy, by individual hospital 2011 - 2015

| Total |   | 1778 (30.8) | 2359 (36.9) | 2388 (35.1) | 2926 (39.4) |
|-------|---|-------------|-------------|-------------|-------------|
| LD    | - | 2 (4.2)     | 2 (4.3)     | 7 (13.0)    | 0 (0.0)     |
| BIN   | - | 6 (16.7)    | 6 (18.2)    | 0 (0.0)     | 0 (0.0)     |
| KEN   | - | 0 (0.0)     | 1 (9.1)     | 0 (0.0)     | 0 (0.0)     |
| LAB   | - | 5 (16.7)    | 0 (0.0)     | 1 (1.50     | 6 (15.4)    |
| KLP   | - | -           | 1 (10.0)    | 1 (9.1)     | 0 (0.0)     |
| KEM   | - | 3 (33.3)    | 6 (40.0)    | 4 (33.3)    | 4 (22.2)    |
| ТМ    | - | 0 (0.0)     | 1 (3.7)     | 19 (55.9)   | 24 (53.3)   |
| SGT   | - | 1 (3.8)     | 3 (10.0)    | 4 (14.8)    | 5 (8.5)     |
| KKR   | - | 8 (38.1)    | 24 (42.9)   | 5 (9.1)     | 9 (16.7)    |
| PD    | - | 7 (26.9)    | 19 (50.0)   | 1 (2.6)     | 5 (14.3)    |
| SLR   | - | 2 (3.4)     | 0 (0.0)     | 4 (5.8)     | 4 (5.6)     |

Withdrawal or withholding of therapy : refers to the discontinuation/not initiating any of the following: vasoactive drugs, renal replacement therapy, mechanical ventilation, surgery, cardiopulmonary resuscitation

Therapy was withheld or withdrawn in 39.4% of deaths in ICU. There was a wide variability of this practice ranging from 0% (KJG, SDG, KLP, KEN, BIN, LD) to 87% (LKW).

In a retrospective audit of all deaths in two major tertiary ICUs in New South Wales, Australia in 2008, 34% had treatments withheld and another 47% had withdrawal of life-sustaining therapy [10].

In a prospective observational study of the end-of-life practices in 37 ICUs in 17 European countries from January 1, 1999, to June 30, 2000, 72.6% of those who died had life-limiting treatment [11].

### **SECTION D:**

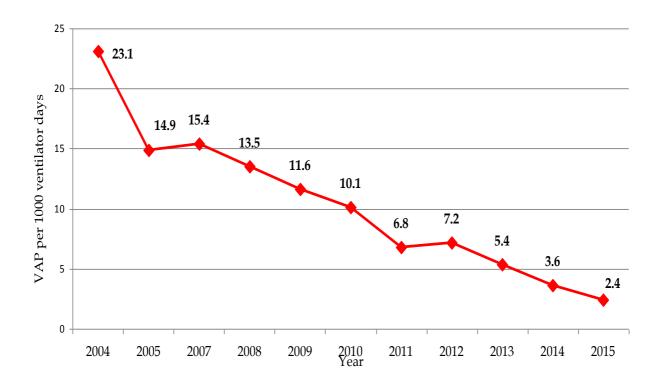
## COMPLICATIONS

- 1. Ventilator-associated pneumonia
- 2. Unplanned extubation
- 3. Pressure ulcers

| TT '/ 1  |      | ٦    | VAP per 1000 | ventilator day | 7S   |      |
|----------|------|------|--------------|----------------|------|------|
| Hospital | 2010 | 2011 | 2012         | 2013           | 2014 | 2015 |
| AS       | 9.6  | 7.5  | 3.0          | 1.3            | 0.6  | 1.5  |
| PP       | 12.9 | 10.1 | 6.9          | 4.2            | 4.4  | 3.2  |
| IPH      | 12.3 | 3.7  | 7.2          | 8.8            | 4.4  | 4.7  |
| KL       | 15.2 | 13.6 | 13.5         | 7.5            | 6.0  | 3.3  |
| SLG      | 13.5 | 8.4  | 4.6          | 5.6            | 3.8  | 7.0  |
| KLG      | 3.5  | 3.8  | 3.6          | 9.2            | 3.1  | 0.4  |
| SBN      | 8.7  | 4.4  | 2.4          | 3.4            | 2.5  | 1.7  |
| MLK      | 8.5  | 9.1  | 7.0          | 1.6            | 0.9  | 1.1  |
| JB       | 9.0  | 5.4  | 4.3          | 0.9            | 0.5  | 0.0  |
| KTN      | 3.3  | 1.6  | 2.7          | 1.2            | 0.4  | 0.2  |
| KT       | 8.7  | 4.1  | 7.2          | 2.9            | 0.8  | 1.3  |
| KB       | 4.1  | 5.6  | 9.2          | 7.5            | 4.2  | 0.0  |
| КСН      | 5.0  | 2.4  | 6.3          | 0.0            | 2.1  | 2.1  |
| KK       | 0.4  | -    | 0.8          | 2.4            | 3.2  | 2.7  |
| SP       | 23.4 | 23.6 | 8.3          | 4.3            | 7.2  | 1.0  |
| РЈҮ      | 14.4 | 9.3  | 3.8          | 8.6            | 2.6  | 2.1  |
| MUR      | 4.9  | 1.7  | 0.6          | 0.7            | 0.6  | 0.6  |
| TI       | 8.8  | 1.4  | 2.0          | 0.0            | 4.1  | 7.1  |
| TPG      | 3.0  | 0.6  | 1.1          | 0.0            | 0.2  | 1.3  |
| SJ       | 14.7 | 5.4  | 3.5          | 3.3            | 5.6  | 2.9  |
| KJG      | 10.9 | 6.0  | 10.3         | 14.3           | 4.8  | 6.1  |
| KGR      | 10.8 | 8.7  | 21.0         | 11.8           | 8.6  | 6.6  |
| TML      | 4.0  | 0.5  | 0            | 1.6            | 4.2  | 6.3  |
| KP       | 2.2  | 0.7  | 0.8          | 1.9            | 2.9  | 1.1  |
| SMJ      | 37.3 | 3.2  | 2.9          | 0.0            | 1.2  | 1.2  |
| BP       | 2.3  | 0.7  | 1.7          | 0.6            | 0.6  | 0.0  |
| TW       | 8.7  | 4.3  | 8.3          | 8.9            | 5.4  | 0.0  |
| MRI      | 2.8  | 1.8  | 3.2          | 3.5            | 8.4  | 2.7  |
| KLM      | 36.7 | 24.7 | 28.3         | 8.6            | 10.3 | 4.2  |
| SDG      | 13.5 | 13.4 | 9.3          | 7.7            | 2.8  | 1.5  |
| SB       | 7.7  | 10.4 | 11.3         | 6.2            | 7.7  | 3.3  |
| DKS      | 7.0  | 0.4  | 1.6          | 0.0            | 2.2  | 2.5  |
| SI       | 11.1 | 12.5 | 16.6         | 8.3            | 5.0  | 0.4  |
| SBL      | 22.7 | 9.9  | 7.1          | 7.6            | 4.2  | 4.0  |
| AMP      | 18.4 | 33.0 | 35.0         | 14.5           | 6.6  | 2.5  |
| LIK      | 0.0  | 0.0  | 4.1          | 0.0            | 1.6  | 0.0  |
| LKW      | -    | -    | 16.2         | 0.0            | 0.0  | 0.1  |
| BM       | -    | -    | -            | 0.7            | 0.8  | 1.3  |
| SLR      | _    | -    | 24.9         | 13.3           | 11.2 | 4.8  |
| PD       | -    | -    | 17.5         | 3.0            | 3.1  | 2.6  |
| KKR      | -    | -    | 9.5          | 22.2           | 18.0 | 5.7  |
| SGT      | -    | -    | 16.8         | 5.1            | 6.5  | 0.9  |
| TM       | -    | -    | -            | 0.0            | 0.0  | 1.7  |
| KEM      | -    | -    | -            | 0.0            | 0.0  | 0.0  |

# Table 30 :Incidence of ventilator-associated pneumonia, by individual<br/>hospital 2010 - 2015

| KLP           | -    | -   | -    | 0.0  | 0.0  | 0.0  |
|---------------|------|-----|------|------|------|------|
| LAB           | -    | -   | 3.6  | 2.0  | 11.1 | 12.4 |
| KEN           | -    | -   | -    | 2.3  | 0.0  | 1.3  |
| BIN           | -    | -   | 22.4 | 11.2 | 0.3  | 2.4  |
| LD            | -    | -   | 3.2  |      | 1.0  | 0.0  |
| MOH hospitals | 10.1 | 6.8 | 7.2  | 5.4  | 3.6  | 2.4  |
| UMMC          |      |     | 8.5  | 6.0  | 7.3  | 7.1  |


VAP: Defined as nosocomial pneumonia developing in a patient after 48 hours of mechanical ventilation with radiological evidence of new or progressive infiltrates with or without the presence of a positive bacteriological culture

## Table 31 :Onset of VAP from initiation of invasive ventilation,<br/>by individual hospital 2011 - 2015

| Hospital | Interval from initiation of ventilation to VAP<br>Mean (Median) days |             |             |             |             |
|----------|----------------------------------------------------------------------|-------------|-------------|-------------|-------------|
|          | 2011                                                                 | 2012        | 2013        | 2014        | 2015        |
| AS       | 7.9                                                                  | 11.0 (9.0)  | 19.6 (15.0) | 11.9 (10.3) | 4.3 (4.3)   |
| PP       | 11.0                                                                 | 11.2 (7.8)  | 14.0 (13.2) | 16.9 (15.8) | 11.8 (10.2) |
| IPH      | 7.7                                                                  | 9.1 (7.7)   | 7.1 (5.7)   | 7.7 (7.1)   | 7.6 (6.4)   |
| KL       | 11.8                                                                 | 10.3 (8.9)  | 13.3 (11.0) | 13.6 (12.1) | 10.2 (8.7)  |
| SLG      | 11.2                                                                 | 11.4 (8.0)  | 12.0 (11.5) | 13.3 (11.7) | 15.9 (14.5) |
| KLG      | 11.0                                                                 | 12.9 (12.0) | 7.3 (5.8)   | 12.0 (11.6) | 11.3 (11.3) |
| SBN      | 15.4                                                                 | 7.7 (8.3)   | 15.2 (7.3)  | 9.0 (7.1)   | 5.4 (3.4)   |
| MLK      | 7.2                                                                  | 7.8 (5.5)   | 20.0 (8.6)  | 30.3 (31.0) | 10.2 (10.2) |
| ЈВ       | 8.4                                                                  | 10.5 (5.7)  | 9.3 (6.5)   | 7.6 (5.6)   | 7.6 (10.2)  |
| KTN      | 9.5                                                                  | 11.5 (10.9) | 11.8 (6.6)  | 20.4 (20.4) | -           |
| KT       | 8.6                                                                  | 10.9 (10.0) | 11.7 (11.2) | 15.3 (15.3) | 10.6 (10.6) |
| KB       | 11.9                                                                 | 13.6 (11.3) | 12.0 (10.7) | 16.7 (16.4) | -           |
| КСН      | 11.4                                                                 | 9.3 (6.6)   | 12.6 (12.1) | 6.4 (7.6)   | 10.6 (7.6)  |
| KK       | *                                                                    | 7.7 (7.1)   | 10.0 (7.3)  | 13.4 (8.9)  | 8.8 (7.5)   |
| SP       | 7.0                                                                  | 6.5 (6.5)   | 9.6 (7.9)   | 8.0 (6.6)   | 8.9 (8.9)   |
| РЈҮ      | 13.9                                                                 | 12.3 (10.9) | 8.1 (7.7)   | 12.7 (8.6)  | 10.5 (9.9)  |
| MUR      | 12.2                                                                 | -           | -           | 13.3 (13.3) | 12.8 (12.8) |
| TI       | 19.5                                                                 | 16.8 (16.8) | 12.2 (12.2) | 9.6 (10.4)  | 5.4 (3.9)   |
| TPG      | 9.6                                                                  | 16.3 (13.1) | -           | -           | 14.5 (8.2)  |
| SJ       | 9.3                                                                  | 12.0 (10.3) | 14.6 (7.9)  | 9.5 (10.0)  | 13.8 (13.8) |
| KJG      | 6.2                                                                  | 7.6 (6.7)   | 7.9 (6.6)   | 6.4 (5.8)   | 12.1 (8.4)  |
| KGR      | 3.9                                                                  | 9.6 (7.2)   | 9.1 (7.4)   | 8.5 (6.3)   | 3.3 (3.3)   |
| SJMC     | 5.4                                                                  | -           | 3.9 (3.9)   | -           | -           |
| TML      | 9.0                                                                  | -           | 6.8 (6.8)   | 10.2 (8.3)  | 9.2 (7.8)   |
| KP       | 20.3                                                                 | 21.3 (21.3) | 5.1 (5.1)   | 15.2 (15.2) | 2.9 (2.9)   |
| SMJ      | 13.2                                                                 | 12.6 (12.6) | 3.7 (3.7)   | 7.4 (7.4)   | 6.6 (6.6)   |
| BP       | 7.1                                                                  | 32.0 (32.0) | 10.1 (10.1) | 8.2 (8.2)   | -           |
| TW       | 10.1                                                                 | 5.6 (4.1)   | 5.7 (4.2)   | 11.8 (10.5) | -           |
| MRI      | 4.0                                                                  | 6.8 (6.8)   | 12.9 (7.5)  | 8.0 (8.0)   | 7.3 (7.5)   |
| KLM      | 7.6                                                                  | 6.4 (4.6)   | 7.6 (8.0)   | 8.0 (6.1)   | 11.5 (12.3) |
| SDG      | 7.9                                                                  | 12.4 (12.1) | 9.6 (8.2)   | 13.3 (10.8) | 12.6 (13.3) |

| SB    | 6.0  | 10.6 (7.2)  | 9.1 (8.6)   | 8.4 (7.6)   | 7.8 (7.3)   |
|-------|------|-------------|-------------|-------------|-------------|
| DKS   | 7.1  | 7.0 (5.5)   | 6.6 (5.6)   | 6.4 (6.4)   | 11.6 (11.9) |
| SI    | 12.1 | 11.5 (10.0) | 9.7 (7.5)   | 10.3 (9.1)  | 4.2 (3.4)   |
| SBL   | 10.7 | 9.6 (7.8)   | 7.9 (6.3)   | 9.5 (9.2)   | 7.8 (5.8)   |
| AMP   | 8.5  | 6.5 (5.3)   | 8.6 (7.9)   | 7.6 (7.1)   | 20.5 (16.9) |
| LIK   | -    | 3.0 (3.0)   | -           | 20.7 (20.7) | 10.0 (10.0) |
| UMMC  | -    | 15.2 (10.8) | 8.2 (7.8)   | 11.2 (8.0)  | 11.8 (7.1)  |
| LKW   | -    | 6.0 (4.4)   | 9.4 (3.9)   | -           | -           |
| BM    | -    | 2.2 (2.2)   | -           | 6.2 (6.2)   | 8.4 (3.7)   |
| SLR   | -    | 8.5 (5.9)   | 10.0 (7.8)  | 11.5 (10.3) | 8.1 (8.1)   |
| PD    | -    | 9.5 (9.5)   | 11.5 (11.5) | -           | -           |
| KKR   | -    | 8.8 (9.5)   | 13.3 (9.4)  | 7.4 (6.9)   | -           |
| SGT   | -    | 10.0 (7.3)  | 6.3 (6.3)   | 7.0 (8.2)   | -           |
| ТМ    | -    | -           | 6.4 (6.5)   | -           | 16.7 (16.7) |
| KEM   | -    | -           | -           | -           | -           |
| KLP   | -    | -           | -           | -           | -           |
| LAB   | -    | 10.1 (10.1) | 15.9 (15.9) | 9.3 (9.3)   | 4.9 (4.1)   |
| KEN   | -    | -           | -           | 2.5 (2.5)   | -           |
| BIN   | -    | 12.2 (11.2) | 8.5 (9.2)   | 8.2 (8.2)   | 10.0 (4.3)  |
| LD    | -    | 10.5 (10.5) | 7.6 (5.6)   | 6.3 (6.3)   | -           |
| Total | 9.7  | 10.1 (7.8)  | 10.0 (7.9)  | 10.8 (8.8)  | 10.3 (8.1)  |

Figure 22 : Ventilator-associated pneumonia, per 1000 ventilator days 2004 – 2015



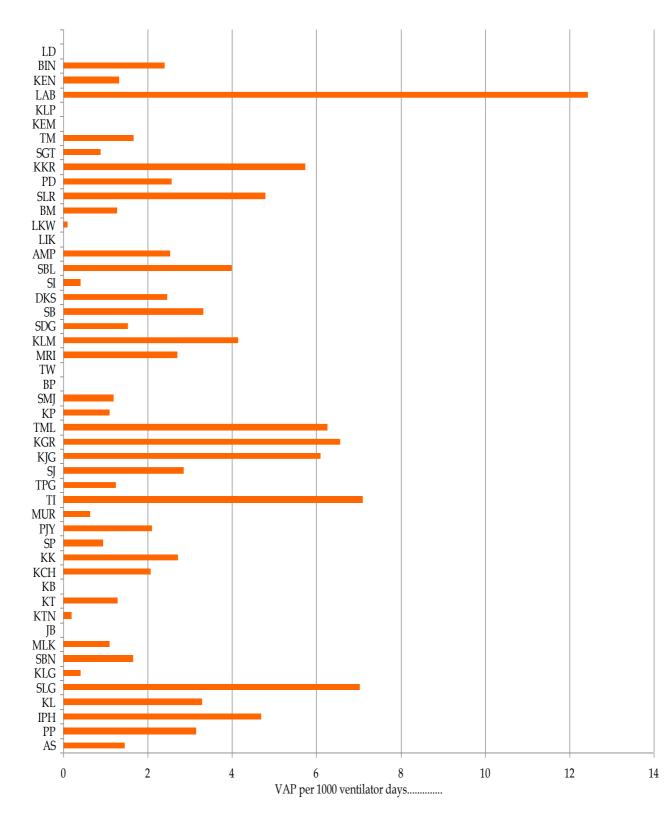



Figure 23 : Ventilator-associated pneumonia, per 1000 ventilator days, by individual hospital 2015

| National Healthcare Safety Network (NHSN) report, data summary for 2012 [12] |                           |        |                  |                  |                  |                  |                  |
|------------------------------------------------------------------------------|---------------------------|--------|------------------|------------------|------------------|------------------|------------------|
| т                                                                            | <b>X7</b> (11)            |        | VAP              | per 1000 v       | entilator o      | lays             |                  |
| Types of ICU                                                                 | Ventilator<br>utilisation | Pooled |                  |                  | Percentile       | 2                |                  |
|                                                                              | ratio                     | mean   | 10 <sup>th</sup> | 25 <sup>th</sup> | 50 <sup>th</sup> | 75 <sup>th</sup> | 90 <sup>th</sup> |
| Mixed medical/<br>surgical > 15 beds                                         | 0.34                      | 0.9    | 0.0              | 0.0              | 0.4              | 1.3              | 2.8              |
| Mixed medical∕<br>surgical <u>&lt;</u> 15 beds                               | 0.24                      | 1.1    | 0.0              | 0.0              | 0.0              | 1.2              | 3.6              |
| Neurosurgical                                                                | 0.30                      | 2.1    | 0.0              | 0.0              | 1.5              | 2.9              | 3.8              |
| Surgical                                                                     | 0.34                      | 2.0    | 0.0              | 0.0              | 0.9              | 2.8              | 5.9              |
| Trauma                                                                       | 0.47                      | 3.6    | 0.0              | 0.8              | 2.6              | 6.0              | 9.4              |

In January 2013, the National Healthcare Safety Network (NHSN) in US introduced new surveillance criteria for ventilator-associated events (VAEs) which include ventilator-associated condition (VAC), infection-related ventilator-associated complication (IVAC) and possible or probable VAP [31]. This was done to capture common complications of ventilator care (i.e. VAC, IVAC and VAP) and improve objectivity of surveillance VAP to allow comparisons across centres.

These new criteria involve a three-tiered approach that can be explained simply as below:

- Tier 1 assesses for VAC from worsening oxygenation status that necessitates increased fractional inspired oxygen (FiO2) or positive end-expiratory pressure (PEEP), or both
- Tier 2 assesses for IVAC with objective changes in temperature and/or white blood cell (WBC) counts along with new antibiotic treatment.
- Tier 3 assesses for possible or probable VAP, as determined by respiratory specimens for microbiologic tests e.g. Gram stain and cultures.

We have adopted these criteria as surveillance diagnosis of VAP in our ICUs from beginning of the year (2015). It is important to note that the VAE definition algorithm is for use in surveillance. It is not a clinical definition algorithm and is not intended for use in the clinical management of patients.

The incidence of VAP had decreased steadily over the past 9 years. In 2007, the VAP rate was 15.4 per 1000 ventilator days. It had decreased by around five times to 3.6 per 1000 ventilator days in 2014 and 2.4 per 1000 ventilator days in 2015.

The mean rate of VAP (2.4 per 1000 ventilator days) in our ICUs was much higher when benchmarked with that of US National Healthcare Safety Network (NHSN) [12]; as shown in the table above. The definition for VAP by NHSN has a more stringent inclusion criterion (resulting in fewer cases being defined as VAP) compared to ours.

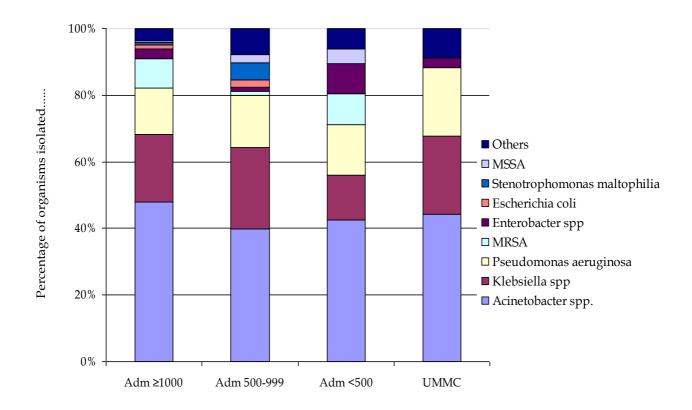
However, the rate of VAP in our ICUs was lower compared with the pooled VAP rate of 15.8 per 1000 ventilator days as reported by Rosenthal et. al.[13] in ICUs in 36 countries in Latin America, Asia, Africa and Europe between 2004 to 2009.

Ventilator usage is a significant risk factor for developing VAP and the exposure to this risk is measured by ventilator utilisation ratio, which is calculated by dividing the number of ventilator days to number of patient days. Ventilator utilisation ratio in our ICUs in 2015 was 0.7, which is more than two times higher than the ICUs in US.

The onset of VAP was 10.3 days from the initiation of invasive ventilation. Onset of VAP in most centres except AS (4.3 days), KGR (3.3 days), KP (2.9 days), SI (4.2 days) and LAB (4.9 days) exceeded 5 days of ventilation, indicating that VAPs in MOH and UMMC ICUs were mostly of late onset.

| ICUs                  |             |               |            |            |             |
|-----------------------|-------------|---------------|------------|------------|-------------|
| Organisms             | Adm ≥ 1000  | Adm 500 - 999 | Adm < 500  | UMMC       | Total       |
| -                     | n (%)       | n (%)         | n (%)      | n (%)      | n (%)       |
| Acinetobacter spp.    | 80 (47.9 )  | 31 (39.7 )    | 28 (42.4 ) | 15 (44.1 ) | 154 (44.6)  |
| MRO                   | 73 (91.3)   | 29 (93.5)     | 18 (64.3)  | 14 (93.3)  | 134 (87.0)  |
| Non-MRO               | 7 (8.7)     | 2 (6.5)       | 10 (35.7)  | 1 (6.7)    | 20 (13.0)   |
|                       |             |               | · · ·      |            |             |
| Klebsiella spp.       | 34 (20.4 )  | 19 (24.4 )    | 9 (13.6)   | 8 (23.5 )  | 70 (20.3)   |
| ESBL                  | 25 (73.5)   | 15 (78.9)     | 6 (66.7)   | 3 (37.5)   | 49 (70.0)   |
| CRE                   | 1 (2.9)     | 0             | 0          | 1 (12.5)   | 2 (2.9)     |
| Non MRO               | 8 (23.5)    | 4 (21.1)      | 3 (33.3)   | 4 (50.0)   | 19 (27.1)   |
|                       |             | · · · ·       |            |            | × ,         |
| Pseudomonas           | 23 (13.8 )  | 12 (15.4 )    | 10 (15.2 ) | 7 (20.6)   | 52 (15.1 )  |
| aeruoginosa           |             |               |            |            |             |
| MRO                   | 5 (21.7)    | 1 (8.3)       | 2 (20.0)   | 2 (28.6)   | 10 (19.2)   |
| Non-MRO               | 18 (78.3)   | 11 (91.7)     | 8 (80.0)   | 5 (71.4)   | 42 (80.8)   |
|                       |             | , , ,         |            |            | , ,         |
| Staphylococcus aureus | 16 (9.6)    | 3 (3.8)       | 10 (15.2)  | 0          | 29 (8.4)    |
| MSSA                  | 1 (6.2)     | 2 (66.7)      | 3 (30.0)   | 0          | 6 (20.7)    |
| MRSA                  | 15 (93.8)   | 1 (33.3)      | 6 (60.0)   | 0          | 22 (75.9)   |
| VRSA                  | 0           | 0             | 1 (10.0)   | 0          | 1 (3.4)     |
|                       |             |               |            |            | ~ /         |
| Enterobacter spp      | 5 (3.0)     | 1 (1.3)       | 6 (9.1)    | 1 (2.9)    | 13 (3.8)    |
| ESBL                  | 1 (20.0)    | 0             | 6 (100.0)  | 0          | 7 (53.8)    |
| CRE                   | 0           | 0             | 0          | 1          | 1 (7.7)     |
| Non MRO               | 4 (80.0)    | 1 (100.0)     | 0          | 0          | 5 (38.5)    |
|                       |             |               |            |            |             |
| Stenotrophomonas      | 1 (0.6)     | 4 (5.1)       | 0 (0)      | 0 (0)      | 5 (1.4 )    |
| maltophilia           |             |               |            |            |             |
| Escherichia coli      | 2 (1.2)     | 2 (2.6)       | 0          | 0          | 4 (1.2)     |
| ESBL                  | 0           | 1 (50.0)      | 0          | 0          | 1 (0.25)    |
| CRE                   | 0           | 0             | 0          | 0          | 0           |
| Non MRO               | 2 (100.0)   | 1 (50.0)      | 0          | 0          | 3 (0.75)    |
|                       | 2 (100.0)   | 1 (00.0)      | 0          | Ū          | 0 (0.70)    |
| Other MRO             | 0           | 1 (1.3)       | 1 (1.5)    | 0          | 2 (0.6)     |
|                       |             | · · ·         |            |            | 、 <i>'</i>  |
| Other Non- MRO        | 6 (3.6)     | 5 (6.4)       | 2 (3.0)    | 3 (8.8)    | 16 (4.6)    |
|                       | 0 (3.0)     | 5 (0.4)       | 2 (3.0)    | 5 (0.0)    | 10 (4.0)    |
|                       |             |               |            |            |             |
| Total                 | 167 (100.0) | 78 (100.0)    | 66 (100.0) | 34 (100.0) | 345 (100.0) |

| Table 32 : | Bacteriological cultures in VAP, by category of ICU 2015   |
|------------|------------------------------------------------------------|
| I ubic 02. | Ducteriological calcules in VIII, by calcesoly of ice 2015 |


MRSA : Methicillin-resistant Staphylococcus aureus

MSSA : Methicillin-sensitive Staphylococcus aureus

VRSA : Vancomycin-resistant Staphylococcus aureus

ESBL : Extended spectrum beta-lactamases

CRE : Carbapenem-resistant Enterobacteriaceae



#### Figure 24 : Bacteriological cultures in VAP 2015

| Table 33 : | Bacteriological | cultures in | VAP 2009 - 2015 |
|------------|-----------------|-------------|-----------------|
|------------|-----------------|-------------|-----------------|

|                                         | 2009       | 2010       | 2011       | 2012       | 2013       | 2014       | 2015       |
|-----------------------------------------|------------|------------|------------|------------|------------|------------|------------|
| Organisms                               | n (%)      |
| Acinetobacter spp.                      | 267 (39.0) | 350 (44.8) | 377 (48.2) | 351 (44.4) | 315 (45.3) | 215 (42.5) | 154 (44.6) |
| Klebsiella spp.                         | 128 (18.7) | 152 (19.5) | 131 (16.7) | 165 (20.8) | 149 (21.4) | 110 (21.7) | 70 (20.3)  |
| Pseudomonas<br>aeruginosa               | 107 (15.6) | 135 (17.3) | 112 (14.3) | 139 (17.5) | 120 (17.2) | 101 (20.0) | 52 (15.1 ) |
| MRSA                                    | 50 (7.3)   | 22 (2.8)   | 31 (3.9)   | 12 (1.5)   | 31 (4.5)   | 12 (2.4)   | 22 (6.4)   |
| MSSA                                    | 39 (5.7)   | 24 (3.1)   | 21 (2.6)   | 19 (2.4)   | 11 (1.6)   | 14 (2.8)   | 6 (1.7)    |
| Stenotrophomonas<br>maltophilia         | 20 (2.9)   | 20 (2.6)   | 19 (2.4)   | 20 (2.5)   | 17 (2.4)   | 8 (1.6)    | 5 (1.4 )   |
| Other gram<br>negative bacteria         | 7 (1.0)    | 10 (1.3)   | 17 (2.1)   | 16 (2.0)   | 6 (0.9)    | 5 (1.0)    | 17 (4.9)   |
| Fungi                                   | 6 (0.9)    | 19 (2.4)   | 21 (2.6)   | 22 (2.7)   | 9 (1.3)    | 9 (1.8)    | 0 (0)      |
| Coagulase<br>negative<br>Staphylococcus | -          | 11 (1.4)   | 13 (1.6)   | 10 (1.2)   | 4 (0.6)    | 4 (0.8)    | 0 (0)      |
| Others                                  | 60 (8.8)   | 38 (4.9)   | 40 (5.1)   | 36 (4.5)   | 34 (4.9)   | 28 (5.5)   | 18 (5.2)   |

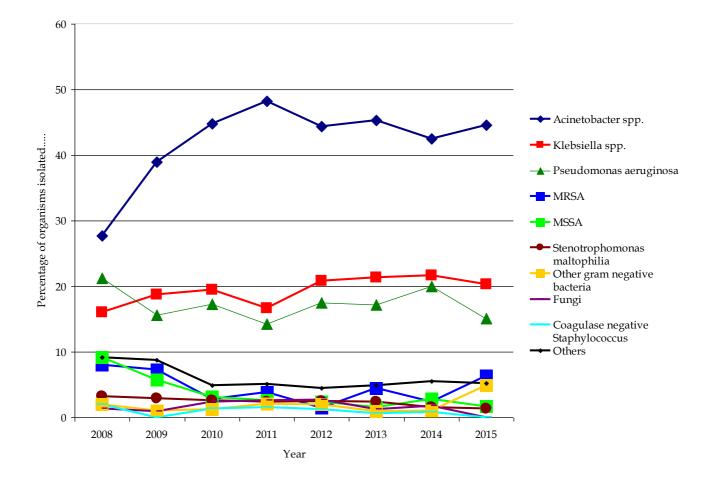



Figure 25 : Common bacteriological cultures in VAP 2008 – 2015

For MOH ICUs in 2015, gram-negative organisms accounted for 90.7% of the causative organisms in VAP. Over the last 8 years, the most common causative organisms were *Acinetobacter spp., Klebsiella spp.* and *Pseudomonas aeruginosa. Acinetobacter spp.* have been the leading causative organism in VAP since 2007, accounting for 44.6% of all organisms in 2015.

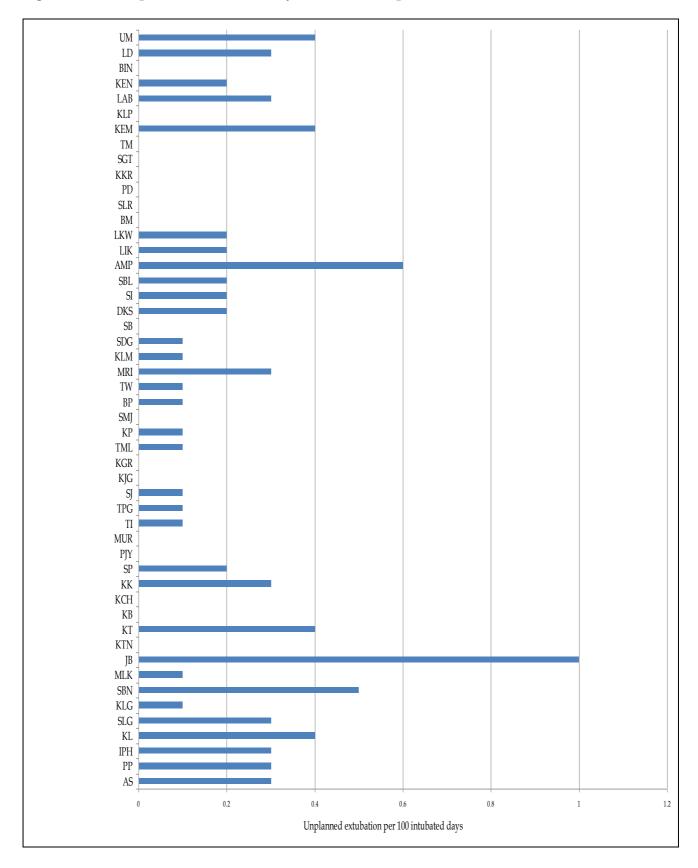
Sixty percent of the causative organisms in VAP in MOH ICUs were of multi-drug resistant strains. *Acinetobacter spp, Klebsiella spp* and *Pseudomonas aeuroginosa* constituted 65.0%, 24.8% and 4.9% of multi-drug resistant strains respectively. *Methicillin-resistant Staphyloccus aureus* accounted for 75.9% of all *Staphyloccus aureus* isolated. This figure was higher compared to previous years.

In UMMC, gram-negative organisms accounted for 100% of all causative organisms in VAP. Sixty two percent of the causative organisms were of multi-drug resistant strains.

In the INICC report [12], 66.3% of Acinetobacter spp isolates in patients with VAP were carbapenem-resistant, 68.9% of *Klebsiella pneumonia* isolates were cephalosporin-resistant and 73.2% of *Staphyloccus aureus* isolates were methicillin-resistant.

### Table 34 :Extra length of mechanical ventilation, ICU stay and Crude in-hospital<br/>mortality in patients with VAP 2013-2015

|                                              | 2013                                     | 2014                                     | 2015                                     |
|----------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|
| Extra length of<br>mechanical<br>ventilation | 15.1 days, RR 1.12<br>(95% CI 1.11-1.13) | 13.5 days, RR 1.09<br>(95% CI 1.09-1.10) | 13.9 days, RR 1.06<br>(95% CI 1.05-1.06) |
| Extra length of ICU                          | 18.3 days, RR 1.11                       | 16.4 days, RR 1.08                       | 15.4 days, RR 1.06                       |
| stay                                         | (95% CI 1.10-1.12)                       | (95% CI 1.07-1.09)                       | (95% CI 1.04-1.06)                       |
| Extra crude mortality                        | 26%, RR 1.54                             | 13.9% , RR 1.79                          | 17.3%, RR 1.40                           |
|                                              | (95% CI 1.43-1.68)                       | (95% CI 1.47-2.10)                       | (95% CI 1.22-1.60)                       |


Patients with VAP stay longer on the ventilator for an additional 14 days in 2015. Their ICU length of stay was prolonged by an average of 15 days. They also had an excess mortality of 17%.

| Hospital | Unplanned extubation<br>per 100 intubated days |      |      |      |      |  |  |
|----------|------------------------------------------------|------|------|------|------|--|--|
|          | 2011                                           | 2012 | 2013 | 2014 | 2015 |  |  |
| AS       | 0.3                                            | 0.3  | 0.3  | 0.2  | 0.3  |  |  |
| РР       | 0.2                                            | 0.3  | 0.1  | 0.2  | 0.3  |  |  |
| IPH      | 0.4                                            | 0.3  | 0.3  | 0.4  | 0.3  |  |  |
| KL       | 1.0                                            | 0.6  | 0.7  | 0.8  | 0.4  |  |  |
| SLG      | 0.6                                            | 0.3  | 0.4  | 0.5  | 0.3  |  |  |
| KLG      | 0.2                                            | 0.1  | 0.3  | 0.1  | 0.1  |  |  |
| SBN      | 0.8                                            | 0.5  | 0.8  | 1.2  | 0.5  |  |  |
| MLK      | 0.8                                            | 0.5  | 0.3  | 0.3  | 0.1  |  |  |
| JB       | 1.2                                            | 0.7  | 0.9  | 1.0  | 1.0  |  |  |
| KTN      | 0.1                                            | 0.0  | 0.2  | 0.0  | 0.0  |  |  |
| KT       | 0.6                                            | 0.3  | 0.1  | 0.3  | 0.4  |  |  |
| КВ       | 0.1                                            | 0.1  | 0.0  | 0.0  | 0.0  |  |  |
| КСН      | 0.1                                            | 0.1  | 0.0  | 0.1  | 0.0  |  |  |
| КК       | 0.2                                            | 0.1  | 0.1  | 0.0  | 0.3  |  |  |
| SP       | 0.5                                            | 0.0  | 0.5  | 0.6  | 0.2  |  |  |
| РЈҮ      | 0.1                                            | 0.2  | 0.1  | 0.0  | 0.0  |  |  |
| MUR      | 0.0                                            | 0.0  | 0.1  | 0.0  | 0.0  |  |  |
| TI       | 0.2                                            | 0.0  | 0.0  | 0.0  | 0.1  |  |  |
| TPG      | 0.5                                            | 0.3  | 0.3  | 0.0  | 0.1  |  |  |
| SJ       | 0.4                                            | 0.2  | 0.5  | 0.1  | 0.1  |  |  |
| KJG      | 0.0                                            | 0.0  | 0.8  | 0.4  | 0.0  |  |  |
| KGR      | 0.0                                            | 0.1  | 0.0  | 0.1  | 0.0  |  |  |
| TML      | 0.2                                            | 0.5  | 0.3  | 0.4  | 0.1  |  |  |
| КР       | 0.3                                            | 0.3  | 0.2  | 0.1  | 0.1  |  |  |
| SMJ      | 0.0                                            | 0.0  | 0.3  | 0.0  | 0.0  |  |  |
| BP       | 0.1                                            | 0.2  | 0.1  | 0.1  | 0.1  |  |  |
| TW       | 0.0                                            | 0.5  | 0.3  | 0.1  | 0.1  |  |  |
| MRI      | 0.1                                            | 0.0  | 0.1  | 0.0  | 0.3  |  |  |
| KLM      | 0.6                                            | 0.6  | 0.3  | 0.5  | 0.1  |  |  |
| SDG      | 0.4                                            | 0.4  | 0.2  | 0.5  | 0.1  |  |  |
| SB       | 0.1                                            | 0.0  | 0.2  | 0.0  | 0.0  |  |  |
| DKS      | 0.0                                            | 0.0  | 0.3  | 0.6  | 0.2  |  |  |
| SI       | 0.4                                            | 0.7  | 0.8  | 1.2  | 0.2  |  |  |
| SBL      | 0.0                                            | 0.0  | 0.1  | 0.2  | 0.2  |  |  |
| AMP      | 1.0                                            | 0.9  | 1.0  | 1.1  | 0.6  |  |  |
| LIK      | 0.0                                            | 0.3  | 0.0  | 0.0  | 0.2  |  |  |
| LKW      |                                                | 0.8  | 0.6  | 0.2  | 0.2  |  |  |
| ВМ       |                                                | 0.0  | 0.0  | 0.0  | 0.0  |  |  |
| SLR      |                                                | 0.1  | 0.0  | 0.2  | 0.0  |  |  |

# Table 35 :Unplanned extubation per 100 intubated days, by individual hospital<br/>2011-2015

| PD        |     | 0.0 | 0.7 | 0.0 | 0.0 |
|-----------|-----|-----|-----|-----|-----|
| KKR       |     | 0.0 | 0.4 | 0.2 | 0.0 |
| SGT       |     | 0.2 | 0.3 | 0.0 | 0.0 |
| ТМ        |     | 0.0 | 0.0 | 0.0 | 0.0 |
| KEM       |     | 0.0 | 0.0 | 0.0 | 0.4 |
| KLP       |     | 0.0 | 1.9 | 0.0 | 0.0 |
| LAB       |     | 0.0 | 0.5 | 0.0 | 0.3 |
| KEN       |     | 0.0 | 0.2 | 0.8 | 0.2 |
| BIN       |     | 0.2 | 0.5 | 0.6 | 0.0 |
| LD        |     | 0.1 | 0.1 | 0.1 | 0.3 |
| Total MOH |     |     | 0.3 | 0.4 | 0.2 |
| UMMC      |     | 0.8 | 0.9 | 1.2 | 0.4 |
| Total     | 0.4 | 0.3 | 0.3 | 0.4 | 0.2 |

The rate of unplanned extubation has remained fairly similar over the past 5 years with a rate of 0.2 per 100 intubated days in 2015. 17 centres did not report unplanned extubation rates in 2015.



#### Figure 26 : Unplanned extubation, by individual hospital 2015

| Hospital | Pressure ulcer per 1000 ICU days |      |      |      |      |  |  |
|----------|----------------------------------|------|------|------|------|--|--|
|          | 2011                             | 2012 | 2013 | 2014 | 2015 |  |  |
| AS       | 15.2                             | 8.6  | 10.4 | 4.5  | 4.1  |  |  |
| PP       | 3.4                              | 6.0  | 8.4  | 3.3  | 11.6 |  |  |
| IPH      | 6.4                              | 8.0  | 5.2  | 4.4  | 6.7  |  |  |
| KL       | 7.9                              | 7.1  | 9.7  | 7.3  | 4.7  |  |  |
| SLG      | 14.4                             | 11.3 | 16.6 | 17.8 | 10.1 |  |  |
| KLG      | 5.6                              | 6.1  | 6.5  | 2.3  | 3.0  |  |  |
| SBN      | 1.1                              | 2.8  | 4.2  | 1.9  | 1.1  |  |  |
| MLK      | 3.8                              | 2.5  | 1.3  | 1.9  | 1.2  |  |  |
| JB       | 6.9                              | 6.7  | 6.9  | 13.1 | 15.9 |  |  |
| KTN      | 0.8                              | 4.2  | 8.4  | 10.0 | 13.1 |  |  |
| KT       | 2.5                              | 1.8  | 1.3  | 0.0  | 0.0  |  |  |
| КВ       | 3.2                              | 3.4  | 1.5  | 3.0  | 3.7  |  |  |
| КСН      | 5.0                              | 5.1  | 7.8  | 5.6  | 7.6  |  |  |
| KK       | 5.1                              | 9.8  | 5.8  | 5.3  | 10.2 |  |  |
| SP       | 2.7                              | 3.2  | 2.2  | 6.6  | 7.6  |  |  |
| РЈҮ      | 1.7                              | 4.2  | 3.2  | 0.8  | 1.4  |  |  |
| MUR      | 1.3                              | 0.9  | 0.5  | 0.9  | 1.1  |  |  |
| TI       | 1.6                              | 1.3  | 0.8  | 0.8  | 1.7  |  |  |
| TPG      | 5.4                              | 1.6  | 1.3  | 0.7  | 2.1  |  |  |
| SJ       | 3.2                              | 2.8  | 10.1 | 5.3  | 3.0  |  |  |
| KJG      | 14.5                             | 5.9  | 2.0  | 5.2  | 1.1  |  |  |
| KGR      | 2.9                              | 13.4 | 14.1 | 13.3 | 2.8  |  |  |
| TML      | 0.7                              | 2.4  | 1.0  | 1.5  | 1.2  |  |  |
| KP       | 5.7                              | 11.2 | 3.7  | 4.9  | 7.6  |  |  |
| SMJ      | 0.0                              | 0.0  | 2.2  | 0.0  | 0.7  |  |  |
| BP       | 10.1                             | 3.9  | 1.9  | 1.5  | 1.5  |  |  |
| TW       | 11.2                             | 15.9 | 21.1 | 8.5  | 9.5  |  |  |
| MRI      | 12.2                             | 5.7  | 12.5 | 23.2 | 18.3 |  |  |
| KLM      | 11.0                             | 13.0 | 7.7  | 9.8  | 5.0  |  |  |
| SDG      | 4.5                              | 3.0  | 6.2  | 5.5  | 4.5  |  |  |
| SB       | 9.3                              | 10.0 | 17.8 | 13.3 | 5.3  |  |  |
| DKS      | 0.0                              | 2.1  | 6.7  | 2.8  | 4.4  |  |  |
| SI       | 9.7                              | 13.5 | 10.7 | 16.3 | 7.9  |  |  |
| SBL      | 2.2                              | 8.4  | 8.7  | 18.4 | 13.5 |  |  |
| AMP      | 7.2                              | 7.4  | 8.5  | 2.5  | 3.1  |  |  |
| LIK      | 1.0                              | 5.8  | 1.7  | 2.7  | 17.8 |  |  |
| LKW      | -                                | 15.0 | 1.4  | 4.9  | 1.1  |  |  |
| BM       | -                                | 3.7  | 4.2  | 4.9  | 11.8 |  |  |
| SLR      | -                                | 2.7  | 2.8  | 11.8 | 2.4  |  |  |
| PD       | -                                | 9.8  | 2.8  | 0.0  | 1.9  |  |  |
| KKR      | -                                | 6.5  | 3.7  | 3.3  | 5.7  |  |  |
| SGT      | -                                | 8.5  | 3.8  | 0.0  | 4.5  |  |  |

### Table 36 :Pressure ulcer, by individual hospital 2011 - 2015

| ТМ        | -   | 0.0  | 4.1  | 1.5  | 1.7   |
|-----------|-----|------|------|------|-------|
| KEM       | -   | 2.5  | 2.0  | 15.4 | 0.0   |
| KLP       | -   | 0.0  | 11.8 | 3.5  | 1.4   |
| LAB       | -   | 10.4 | 9.7  | 5.9  | 8.8   |
| KEN       | -   | 0.0  | 4.5  | 9.0  | 1.7   |
| BIN       | -   | 1.9  | 5.0  | 0.0  | 4.1   |
| LD        | -   | 4.5  | 3.4  | 5.4  | 13.`1 |
| Total MOH |     |      | 6.5  | 6.9  | 6.5   |
| UMMC      | -   | 27.0 | 7.5  | 5.3  | 5.2   |
| Total     | 5.8 | 6.8  | 6.6  | 6.8  | 6.5   |

Pressure ulcer: A circumscribed area in which cutaneous tissue has been destroyed and there is progressive destruction of underlying tissue caused by interference with circulation and nutrition to the area. Signs include blisters or broken skin or sore formation over pressure areas

The incidence of pressure ulcers ranged from 0.0 to 18.3 per 1000 ICU days with a mean of 6.5.

For MOH hospitals, the average incidence of pressure ulcers was 6.5 per 1000 ICU days.

Comparisons of rate of pressure ulcers with international standards to describe performance of individual units are not without limitations. Incidence or prevalence rates are frequently used to describe the frequency of pressure ulcers. Prevalence is a measure of the number of cases of pressure ulcers at a specific time, providing a description of the total burden of the disease, while incidence describes the number of new pressure ulcers. Incidence density describes number of new pressure ulcers per 1,000 days rather than per patient. Also the definition of pressure ulcers does vary between studies; some consider all pressure ulcers while others only include stage 2 and above ulcers.

Interventions used in ICUs are sometimes contradictory to good skin care practices. For prevention of ventilator-associated pneumonia, it is recommended that the head of bed is raised to 45<sup>o</sup>. However, maintaining the head of a bed that high predisposes the patient to sliding down the bed, causing shearing and friction, and leading to development of pressure ulcers. As a compromise, it is now recommended to nurse critically ill patients with head of bed elevated at 30<sup>o</sup>. Hypotension predisposes to skin breakdown, yet haemodynamic instability prevents the staff from turning patients at the recommended frequency of every 2 hours.

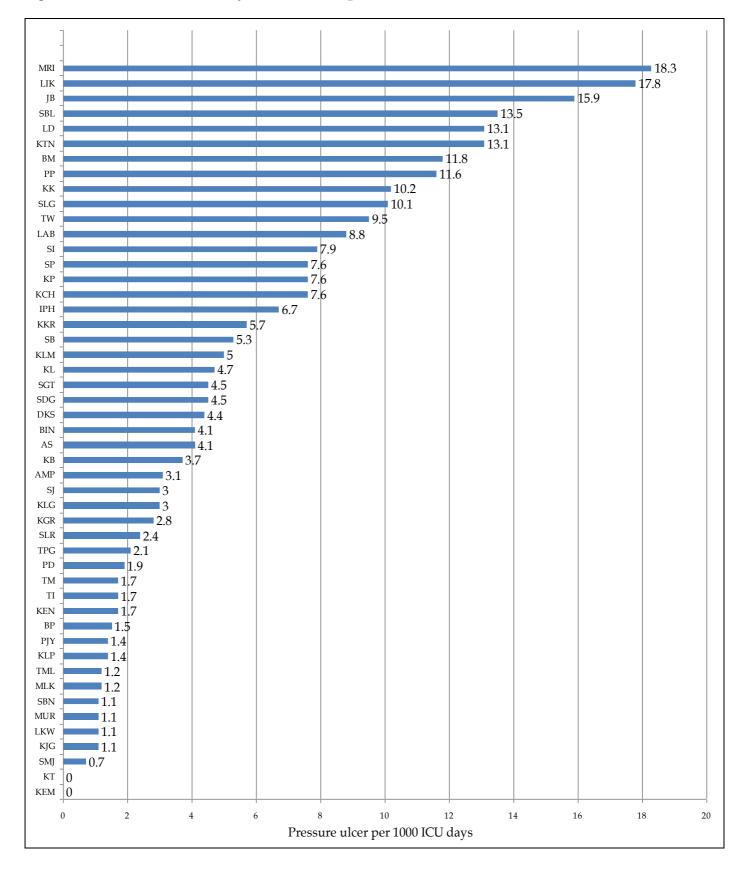



Figure 27 : Pressure ulcers, by individual hospital 2015

### **SECTION E:**

### **MORTALITY OUTCOMES**

- 1. ICU outcome
- 2. Hospital outcome
- 3. Crude in-ICU mortality
- 4. Crude in-hospital mortality
- 5. Standardised mortality ratio

Crude mortality rates are convenient measures of outcome. However, they are poor indicators of performance of intensive care as they do not take into account variations in patient characteristics such as case mix and the severity of illness.

A better measure of ICU performance is standardised mortality ratio (SMR), comparing the observed to the predicted mortality, using a severity scoring system. SMR stratifies patients according to the severity of illness. SMR of more than one indicates that the actual number of deaths is more than the predicted number of deaths and vice versa.

When interpreting SMR values, one must take into consideration factors which affect the severity scoring system used to predict mortality. These include interval between onset of illness to ICU admission (lead time bias), post-ICU care and small sample size. Lead-time bias refers to the erroneous estimation of risk at the time of admission to the ICU due to the results of therapeutic actions taken previously.

| ICU outcome                           | ICUs                |                        |                    |                |                 |  |  |
|---------------------------------------|---------------------|------------------------|--------------------|----------------|-----------------|--|--|
|                                       | Adm ≥ 1000<br>n (%) | Adm 500 - 999<br>n (%) | Adm < 500<br>n (%) | UMMC<br>n (%)  | Total<br>n (%)  |  |  |
| Alive                                 | 19812<br>(80.5)     | 5923<br>(77.6)         | 4745<br>(78.6)     | 1038<br>(80.2) | 31518<br>(79.6) |  |  |
| Died                                  | 4474<br>(18.2)      | 1511<br>(19.8)         | 1009<br>(16.7)     | 241<br>(18.6)  | 7235<br>(18.3)  |  |  |
| Discharged<br>with grave<br>prognosis | 171<br>(0.7)        | 83<br>(1.1)            | 93<br>(1.5)        | 11<br>(0.9)    | 358<br>(0.9)    |  |  |
| Transfer to<br>another<br>hospital    | 169<br>(0.7)        | 120<br>(1.6)           | 191<br>(3.2)       | 4<br>(0.3)     | 484<br>(1.2)    |  |  |
| Total                                 | 24626<br>(100)      | 7637<br>(100)          | 6038<br>(100)      | 1294<br>(100)  | 39595<br>(100)  |  |  |

#### Table 37 :ICU outcome, by category of ICU 2015

| Table 38 : | Hospital outcome, by category of ICU 2015 |
|------------|-------------------------------------------|
| I ubic 00. | mosphul outcome, by cutegoly of ice 2015  |

|                                       | ICUs              |               |              |             |               |  |  |
|---------------------------------------|-------------------|---------------|--------------|-------------|---------------|--|--|
| Hospital                              | Adm <u>≥</u> 1000 | Adm 500 - 999 | Adm < 500    | UMMC        | Total         |  |  |
| outcome                               | n (%)             | n (%)         | n (%)        | n (%)       | n (%)         |  |  |
| Alive                                 | 17365             | 5217          | 4385         | 923         | 27890         |  |  |
|                                       | (70.5)            | (68.3)        | (72.6)       | (71.3)      | (70.4)        |  |  |
| Died                                  | 6167              | 2009          | 1276         | 333         | 9785          |  |  |
|                                       | (25.0)            | (26.3)        | (21.1)       | (25.7)      | (24.7)        |  |  |
| Discharged<br>with grave<br>prognosis | 314<br>(1.3)      | 108<br>(1.4)  | 120<br>(2.0) | 33<br>(2.6) | 575<br>(1.5)  |  |  |
| Transfer to<br>another<br>hospital    | 780<br>(3.2)      | 303<br>(4.0)  | 257<br>(4.3) | 5<br>(0.4)  | 1345<br>(3.4) |  |  |
| Total                                 | 24626             | 7637          | 6038         | 1294        | 39595         |  |  |
|                                       | (100.0)           | (100)         | (100)        | (100)       | (100)         |  |  |

| Hospital | (           | Crude in-ICU mortality (in-hospital mortality) % |             |              |             |  |  |  |
|----------|-------------|--------------------------------------------------|-------------|--------------|-------------|--|--|--|
|          | 2011        | 2012                                             | 2013        | 2014         | 2015        |  |  |  |
| AS       | 24.1 (34.4) | 26.7 (44.5)                                      | 27.3 (37.3) | 28.9 (39.7)  | 25.4 (41.7) |  |  |  |
| PP       | 14.4 (23.3) | 16.5 (26.9)                                      | 15.6 (25.0) | 18.3 (25.7)  | 19.7 (29.6) |  |  |  |
| IPH      | 22.4 (30.0) | 16.5 (25.5)                                      | 18.5 (25.6) | 16.7 (24.7)  | 20.1 (29.2) |  |  |  |
| KL       | 17.0 (24.7) | 18.4 (27.0)                                      | 17.5 (25.8) | 14.3 (21.9)  | 18.1 (25.2) |  |  |  |
| SLG      | 17.9 (25.8) | 16.5 (27.1)                                      | 17.2 (24.5) | 15.7 (20.8)  | 16.2 (21.0) |  |  |  |
| KLG      | 17.1 (25.1) | 15.5 (22.9)                                      | 13.6 (21.7) | 13.3 (19.3)  | 15.7 (20.2) |  |  |  |
| SBN      | 21.3 (30.0) | 22.1 (30.4)                                      | 19.7 (25.7) | 21.1 (27.9)  | 18.5 (26.4) |  |  |  |
| MLK      | 23.6 (32.7) | 13.5 (32.1)                                      | 19.9 (28.2) | 20.0 (27.7)  | 20.0 (26.5) |  |  |  |
| JB       | 22.3 (31.4) | 21.4 (30.0)                                      | 22.2 (29.9) | 17.4 (25.5)  | 20.3 (28.2) |  |  |  |
| KTN      | 17.2 (24.3) | 24.1 (34.9)                                      | 22.2 (32.2) | 17.8 (25.5)  | 21.3 (28.6) |  |  |  |
| KT       | 20.9 (27.2) | 18.5 (28.1)                                      | 22.0 (32.0) | 21.0 (30.0)  | 17.9 (25.3) |  |  |  |
| KB       | 17.8 (24.4) | 16.0 (22.6)                                      | 15.0 (21.3) | 11.6 (16.1)  | 13.1 (23.5) |  |  |  |
| КСН      | 22.1 (29.1) | 17.4 (24.3)                                      | 18.0 (24.0) | 13.9 (17.7)  | 16.4 (23.2) |  |  |  |
| KK       | 20.5 (27.3) | 21.7 (34.0)                                      | 19.5 (25.3) | 17.2 (22.5)  | 15.7 (23.0) |  |  |  |
| SP       | 32.6 (42.2) | 26.9 (38.4)                                      | 23.3 (32.6) | 22.8 (30.4)  | 17.6 (24.5) |  |  |  |
| РЈҮ      | 18.4 (21.9) | 16.9 (19.3)                                      | 19.9 (22.9) | 15.9 (19.6)  | 14.4 (17.9) |  |  |  |
| MUR      | 20.9 (29.2) | 24.1 (33.8)                                      | 20.7 (24.7) | 24.2 (26.2)  | 22.4 (28.8) |  |  |  |
| ΤΊ       | 22.4 (35.1) | 17.7 (31.9)                                      | 21.9 (34.6) | 23.4 (34.7)  | 21.9 (27.4) |  |  |  |
| TPG      | 27.0 (43.4) | 21.4 (35.3)                                      | 19.3 (30.1) | 20.9 (28.8)  | 20.0 (31.8) |  |  |  |
| SJ       | 25.2 (35.2) | 23.2 (35.5)                                      | 29.3 (40.2) | 24.2 (28.4)  | 17.7 (19.6) |  |  |  |
| KJG      | 19.6 (27.0) | 15.0 (23.8)                                      | 15.9 (26.8) | 12.0 (21.1)  | 13.9 (21.0) |  |  |  |
| KGR      | 18.1 (25.8) | 16.3 (22.1)                                      | 18.0 (24.5) | 17.0 (17.3)  | 18.4 (21.3) |  |  |  |
| TML      | 19.7 (23.0) | 14.7 (21.0)                                      | 16.0 (22.5) | 19.1 (25.7)  | 20.1 (27.5) |  |  |  |
| KP       | 34.3 (47.1) | 28.9 (42.4)                                      | 28.7 (38.0) | `30.5 (37.1) | 25.8 (33.5) |  |  |  |
| SMJ      | 24.5 (33.2) | 24.3 (29.6)                                      | 27.6 (32.7) | 30.1 (36.1)  | 17.9 (25.1) |  |  |  |
| BP       | 21.4 (32.6) | 29.8 (40.7)                                      | 22.7 (31.0) | 20.0 (34.6)  | 16.1 (28.0) |  |  |  |
| TW       | 15.7 (27.0) | 13.7 (24.3)                                      | 17.8 (29.6) | 16.3 (23.7)  | 15.2 (21.2) |  |  |  |
| MRI      | 22.6 (29.6) | 18.3 (24.1)                                      | 18.7 (22.0) | 15.4 (16.8)  | 24.7 (25.9) |  |  |  |
| KLM      | 30.9 (40.2) | 21.0 (32.5)                                      | 25.8 (39.0) | 26.5 (40.0)  | 23.7 (34.9) |  |  |  |
| SDG      | 18.0 (22.9) | 17.7 (25.9)                                      | 18.3 (26.3) | 16.6 (22.6)  | 18.7 (23.6) |  |  |  |
| SB       | 24.3 (31.8) | 22.8 (30.2)                                      | 24.9 (39.5) | 27.1 (35.3)  | 16.0 (24.3) |  |  |  |
| DKS      | 27.8 (30.2) | 25.5 (26.8)                                      | 26.9 (31.3) | 22.3 (31.5)  | 18.6 (25.1) |  |  |  |
| SI       | 22.1 (28.7) | 24.6 (28.6)                                      | 21.2 (26.5) | 20.2 (26.1)  | 19.1 (26.2) |  |  |  |
| SBL      | 18.0 (28.5) | 17.2 (25.2)                                      | 18.6 (26.9) | 18.7 (24.1)  | 18.0 (24.5) |  |  |  |
| AMP      | 35.1 (43.9) | 37.9 (47.8)                                      | 31.1 (42.1) | 35.6 (44.0)  | 33.9 (43.7) |  |  |  |
| LIK      | 2.9 (3.7)   | 5.6 (6.5)                                        | 4.1 (6.0)   | 2.3 (4.0)    | 6.5 (7.3)   |  |  |  |
| LKW      | -           | 28.6 (36.2)                                      | 17.8 (22.3) | 26.1 (33.3)  | 25.9 (31.9) |  |  |  |
| BM       | -           | 13.2 (21.1)                                      | 29.8 (34.8) | 19.9 (22.2)  | 23.9 (35.1) |  |  |  |
| SLR      | -           | 42.8 (52.6)                                      | 27.6 (31.1) | 32.7 (39.0)  | 35.3 (42.9) |  |  |  |
| PD       | -           | 14.6 (18.4)                                      | 15.9 (23.0) | 15.5 (20.0)  | 15.5 (17.0) |  |  |  |
| KKR      | -           | 15.0 (24.4)                                      | 23.7 (28.7) | 21.5 (21.5)  | 13.7 (15.9) |  |  |  |

# Table 39 :Crude in-ICU and in-hospital mortality rate, by individual hospital<br/>2011 - 2015

| SGT           | -            | 24.5 (30.4) | 21.4 (34.5) | 18.0 (25.3) | 19.1 (23.5) |
|---------------|--------------|-------------|-------------|-------------|-------------|
| TM            | -            | 5.9 (11.8)  | 23.7 (24.4) | 22.5 (24.4) | 15.1 (18.2) |
| KEM           | -            | 9.9 (12.6)  | 15.3 (17.1) | 13.2 (23.1) | 10.2 (18.9) |
| KLP           | -            | 0 (0)       | 8.6 (11.2)  | 12.5 (14.6) | 7.1 (9.2)   |
| LAB           | -            | 29.7 (34.3) | 35.7 (40.0) | 40.4 (43.4) | 20.9 (24.8) |
| KEN           | -            | 11.4 (20.0) | 6.8 (12.4)  | 9.7 (12.5)  | 6.0 (10.4)  |
| BIN           | -            | 17.8 (27.7) | 12.7 (17.7) | 14.5 (19.8) | 13.7 (22.3) |
| LD            | -            | 29.8 (38.1) | 23.0 (35.3) | 29.5 (40.6) | 15.4 (28.8) |
| MOH Hospitals | 21.2 (29.5 ) | 19.4 (27.9) | 19.9 (27.7) | 19.0 (25.7) | 18.7 (26.0) |
| UMMC          | -            | 20.3 (31.8) | 16.7 (24.8) | 18.4 (25.8) | 18.8 (26.5) |

The overall in-ICU and in-hospital mortality rates for MOH hospitals in 2015 were 18.7% and 26.0% respectively.

UMMC had fairly similar in-ICU and in-hospital mortality rates of 18.8% and 26.5% respectively.

KEN had the lowest in-ICU mortality rate (6.0%). LIK had the lowest in-hospital mortality rate (7.3%).

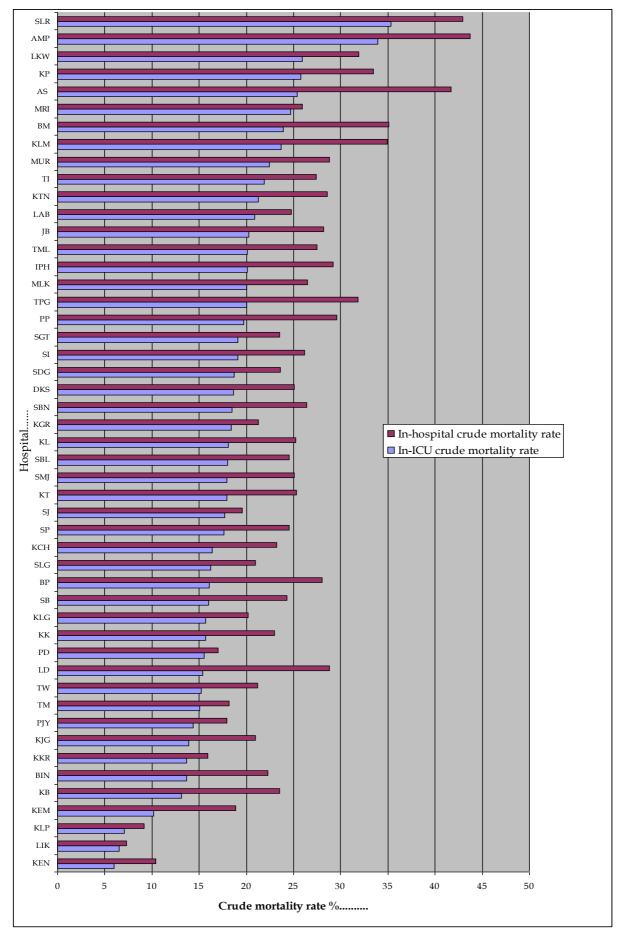



Figure 28 : Crude In-ICU and In-hospital mortality rates, by individual hospital 2015

| Diamagia                   |      |      | Mortal | lity (%) |      |      |
|----------------------------|------|------|--------|----------|------|------|
| Diagnosis                  | 2010 | 2011 | 2012   | 2013     | 2014 | 2015 |
| Dengue infection           | 8.6  | 6.4  | 5.6    | 5.6      | 7.1  | 8.9  |
| Sepsis                     | 59.3 | 58.9 | 54.4   | 53.4     | 52.8 | 51.2 |
| Head injury                | 27.4 | 25.2 | 23.1   | 22.1     | 22.2 | 22.0 |
| Community-acquired         | 42.6 | 40.6 | 39.0   | 38.9     | 36.2 | 33.5 |
| pneumonia                  |      |      |        |          |      |      |
| Cerebral vascular disease  | -    | 41.9 | 40.5   | 45.5     | 41.1 | 42.8 |
| Chronic lower respiratory  | 26.2 | 24.9 | 23.6   | 22.1     | 18.8 | 18.7 |
| disease                    |      |      |        |          |      |      |
| Bronchial asthma           | 7.8  | 10.9 | 7.5    | 8.1      | 7.6  | 6.1  |
| Non-cardiogenic            | 29.5 | 22.3 | 18.9   | 21.4     | 21.6 | 17.5 |
| pulmonary oedema           |      |      |        |          |      |      |
| Infection/gangrene of      | 39.1 | 41.8 | 39.6   | 37.7     | 36.9 | 37.0 |
| limb (include              |      |      |        |          |      |      |
| osteomyelitis, necrotising |      |      |        |          |      |      |
| fasciitis)                 |      |      |        |          |      |      |
| DKA/HHS                    | -    | -    | -      | 21.1     | 19.3 | 16.9 |

### Table 40 :Ten most common diagnoses leading to ICU admission in MOH<br/>hospitals and observed in-hospital mortality 2010 - 2015

In-hospital mortality for dengue infection increased slightly in 2015 compared to the previous years. In-hospital mortality for patients with sepsis, community-acquired pneumonia, and acute exacerbation of chronic lower respiratory disease had steadily improved over the past five years.

| Table 41 : | Severe sepsis, ARDS and AKI within 24hrs of ICU admission and observed |
|------------|------------------------------------------------------------------------|
|            | in-hospital mortality 2012 - 2015                                      |

|                               | In-hospital Mortality (%) |      |      |      |  |
|-------------------------------|---------------------------|------|------|------|--|
|                               | 2012                      | 2013 | 2014 | 2015 |  |
| Severe sepsis                 | 43.1                      | 41.6 | 35.5 | 41.1 |  |
| ARDS                          | 37.3                      | 36.6 | 35.9 | 33.3 |  |
| AKI                           | 41.4                      | 43.9 | 38.0 | 38.5 |  |
| Severe sepsis + ARDS          | 67.1                      | 60.3 | 62.7 | 58.2 |  |
| Severe sepsis + AKI           | 61.3                      | 59.3 | 61.5 | 59.5 |  |
| Severe sepsis + ARDS +<br>AKI | 80.4                      | 73.4 | 73.7 | 77.5 |  |

The in-hospital mortality for severe sepsis within 24 hours of ICU admission increased to 41.1 in 2015. It is higher when compared with the in-ICU mortality of the Sepsis Occurrence in Acutely Ill Patient (SOAP) study. The in-ICU mortality was 27% in patient with sepsis on ICU admission [5].

Reported mortality in ICU patients with AKI varies considerably between studies depending on definition of AKI, patient population (e.g., sepsis, trauma, cardiothoracic surgery) and severity of AKI. Patients with maximum RIFLE class R, class I and class F had hospital mortality rates of 8.8%, 11.4% and 26.3%, respectively [14]. Payen et al reported that patients with acute kidney injury had higher mortality rates than patients without acute kidney injury among patients enrolled in the SOAP study (60-day mortality 35.7% versus 16.4%; P < 0.01) [15].

|          |                  | Standardi         | Standardised mortality ratio (95% CI) |                  |                  |  |  |  |
|----------|------------------|-------------------|---------------------------------------|------------------|------------------|--|--|--|
| Hospital | 2011             | 2012              | 2013                                  | 2014             | 2015             |  |  |  |
| AS       | 0.82 (0.60-1.11) | 1.07 (0.81-1.39)  | 1.01 (0.76-1.32)                      | 0.91 (0.68-1.20) | 1.06 (0.80-1.40) |  |  |  |
| PP       | 0.67 (0.47-0.96) | 0.74 (0.51-1.01)  | 0.71 (0.49-0.99)                      | 0.69 (0.49-0.98) | 0.72 (0.52-1.00) |  |  |  |
| IPH      | 0.96 (0.67-1.35) | 0.83 (0.58-1.17)  | 0.74 (0.51-1.04)                      | 0.75 (0.52-1.05) | 0.87 (0.61-1.18) |  |  |  |
| KL       | 0.61 (0.43-0.87) | 0.63 (0.44-0.88)  | 0.60 (0.42-0.84)                      | 0.58 (0.39-0.82) | 0.63 (0.44-0.89) |  |  |  |
| SLG      | 0.75 (0.52-1.05) | 0.75 (0.54-1.05)  | 0.68 (0.48-0.97)                      | 0.63 (0.43-0.91) | 0.77 (0.53-1.11) |  |  |  |
| KLG      | 0.62 (0.43-0.87) | 0.60 (0.41-0.86)  | 0.54 (0.37-0.80)                      | 0.57 (0.38-0.84) | 0.59 (0.40-0.87) |  |  |  |
| SBN      | 0.77 (0.55-1.04) | 0.73 (0.50-1.03)  | 0.71 (0.51-0.99)                      | 0.79 (0.56-1.10) | 0.77 (0.54-1.09) |  |  |  |
| MLK      | 0.98 (0.71-1.33) | 0.81 (0.58 -1.10) | 0.86 (0.61-1.21)                      | 0.82 (0.59-1.15) | 0.75 (0.53-1.06) |  |  |  |
| JB       | 0.78 (0.56-1.05) | 0.71 (0.51-0.97)  | 0.66 (0.47-0.91)                      | 0.61 (0.42-0.85) | 0.63 (0.44-0.87) |  |  |  |
| KTN      | 0.72 (0.50-1.01) | 0.84 (0.62-1.21)  | 0.82 (0.58-1.09)                      | 0.69 (0.49-0.97) | 0.77 (0.54-1.05) |  |  |  |
| KT       | 0.67 (0.48-0.94) | 0.65 (0.46-0.89)  | 0.72 (0.53-0.98)                      | 0.73 (0.54-1.00) | 0.58 (0.41-0.82) |  |  |  |
| KB       | 0.76 (0.52-1.07) | 0.67 (0.46-0.95)  | 0.62 (0.44-0.92)                      | 0.60 (0.39-0.91) | 0.78 (0.54-1.10) |  |  |  |
| КСН      | 0.82 (0.58-1.13) | 0.75 (0.51-1.06)  | 0.69 (0.47-0.98)                      | 0.56 (0.36-0.84) | 0.72 (0.49-1.02) |  |  |  |
| KK       | 0.71 (0.50-1.00) | 1.00 (0.70-1.38)  | 0.8 (0.55-1.14)                       | 0.51 (0.36-0.74) | 0.49 (0.34-0.70) |  |  |  |
| SP       | 1.00 (0.75-1.30) | 0.77 (0.57-1.03)  | 0.75 (0.54-1.02)                      | 0.79 (0.56-1.07) | 0.72 (0.47-1.06) |  |  |  |
| РЈҮ      | 0.76 (0.50-1.10) | 0.69 (0.45-1.03)  | 0.80 (0.54-1.14)                      | 0.59 (0.40-0.88) | 0.70 (0.47-1.06) |  |  |  |
| MUR      | 0.78 (0.56-1.06) | 0.89 (0.63-1.23)  | 0.55 (0.37-0.79)                      | 0.63 (0.44-0.88) | 0.68 (0.46-0.98) |  |  |  |
| TI       | 0.77 (0.57-1.05) | 0.72 (0.53-0.99)  | 0.65 (0.46-0.88)                      | 0.74 (0.53-1.00) | 0.67 (0.46-0.94) |  |  |  |
| TPG      | 0.92 (0.69-1.20) | 0.80 (0.58-1.07)  | 0.64 (0.45-0.89)                      | 0.68 (0.49-0.95) | 0.72 (0.52-0.98) |  |  |  |
| SJ       | 0.84 (0.61-1.12) | 0.87 (0.64-1.17)  | 0.95 (0.73-1.25)                      | 0.70 (0.49-0.95) | 0.40 (0.25-0.62) |  |  |  |
| KJG      | 0.79 (0.57-1.11) | 0.85 (0.55-1.14)  | 0.88 (0.61-1.20)                      | 0.73 (0.50-1.05) | 0.85 (0.57-1.20) |  |  |  |
| KGR      | 0.72 (0.51-1.04) | 0.62 (0.42-0.89)  | 0.64 (0.44-0.90)                      | 0.61 (0.40-0.91) | 0.77 (0.51-1.08) |  |  |  |
| TML      | 0.59 (0.41-0.85) | 0.64 (0.43-0.90)  | 0.80 (0.56-1.15)                      | 0.83 (0.59-1.15) | 0.82 (0.57-1.12) |  |  |  |
| KP       | 1.06 (0.79-1.37) | 0.95 (0.72-1.25)  | 0.95 (0.71-1.26)                      | 0.98 (0.74-1.33) | 0.98 (0.71-1.32) |  |  |  |
| SMJ      | 0.78 (0.57-1.07) | 0.70 (0.51-0.97)  | 0.69 (0.49-0.95)                      | 0.82 (0.60-1.10) | 0.64 (0.44-0.90) |  |  |  |
| BP       | 0.69 (0.50-0.94) | 0.87 (0.65-1.14)  | 0.69 (0.47-0.97)                      | 0.79 (0.58-1.06) | 0.75 (0.54-1.05) |  |  |  |
| TW       | 0.72 (0.51-0.98) | 0.67 (0.47-0.93)  | 0.76 (0.53-1.03)                      | 0.65 (0.43-0.93) | 0.77 (0.54-1.10) |  |  |  |
| MRI      | 0.89 (0.62-1.25) | 0.65 (0.42-0.96)  | 0.62 (0.43-0.89)                      | 0.50 (0.32-0.73) | 0.62 (0.43-0.88) |  |  |  |
| KLM      | 0.83 (0.62-1.11) | 0.69 (0.50-0.94)  | 0.75 (0.56-1.00)                      | 0.79 (0.58-1.04) | 0.72 (0.53-0.97) |  |  |  |
| SDG      | 0.61 (0.42-0.86) | 0.61 (0.44-0.85)  | 0.65 (0.46-0.90)                      | 0.57 (0.41-0.81) | 0.57 (0.40-0.81) |  |  |  |
| SB       | 0.88 (0.64-1.17) | 0.75 (0.54-1.01)  | 0.87 (0.65-1.14)                      | 0.78 (0.56-1.04) | 0.73 (0.51-1.03) |  |  |  |
| DKS      | 0.76 (0.55-1.02) | 0.74 (0.52-1.01)  | 0.76 (0.52-1.06)                      | 0.83 (0.61-1.14) | 0.69 (0.48-0.96) |  |  |  |
| SI       | 0.77 (0.56-1.07) | 0.73 (0.52-1.01)  | 0.78 (0.55-1.10)                      | 0.78 (0.55-1.11) | 0.80 (0.57-1.13) |  |  |  |
| SBL      | 0.74 (0.53-1.03) | 0.63 (0.45-0.90)  | 0.92 (0.65-1.28)                      | 0.67 (0.48-0.97) | 0.61 (0.40-0.85) |  |  |  |
| AMP      | 0.92 (0.71-1.20) | 0.90 (0.69-1.17)  | 0.89 (0.69-1.15)                      | 0.9 (0.69-1.17)  | 0.93 (0.71-1.22) |  |  |  |
| LIK      | 0.19 (0.10-0.45) | 0.27 (0.14-0.57)  | 0.58 (0.30-1.08)                      | 0.28 (0.11-0.57) | 0.43 (0.19-0.86) |  |  |  |
| LKW      | -                | 0.96 (0.71-1.25)  | 0.74 (0.48-1.08)                      | 0.84 (0.61-1.12) | 0.68 (0.49-0.91) |  |  |  |
| BM       | -                | 0.54 (0.36-0.79)  | 0.58 (0.41-0.79)                      | 0.33 (0.22-0.48) | 0.54 (0.39-0.72) |  |  |  |
| SLR      | -                | 0.98 (0.76-1.26)  | 0.71 (0.51-0.99)                      | 0.80 (0.59-1.04) | 0.88 (0.66-1.15) |  |  |  |
| PD       | -                | 0.60 (0.40-0.92)  | 0.74 (0.51-1.05)                      | 0.75 (0.48-1.08) | 0.56 (0.36-0.82) |  |  |  |
| KKR      | -                | 0.68 (0.47-0.96)  | 0.64 (046-0.88)                       | 0.40 (0.27-0.60) | 0.35 (0.23-0.54) |  |  |  |

### Table 42 :Standardised mortality ratio, by individual hospital 2011 - 2015

| UMMC      | - | 0.83<br>(0.60-1.14) | 0.65<br>(0.44-0.91) | 0.65<br>(0.44-0.90) | 0.68<br>(0.45-0.98) |
|-----------|---|---------------------|---------------------|---------------------|---------------------|
| Total MOH |   |                     | 0.72<br>(0.51-1.00) | 0.69<br>(0.48-0.95) | 0.69<br>(0.47-0.95) |
| LD        | - | 0.68 (0.5-0.9)      | 0.77 (0.54-1.06)    | 0.90 (0.67-1.17)    | 0.62 (0.44-0.84)    |
| BIN       | - | 1.15 (0.84-1.51)    | 0.6 (0.40-0.87)     | 0.60 (0.42-0.87)    | 0.61 (0.43-0.86)    |
| KEN       | - | 0.55 (0.39-0.77)    | 0.41 (0.25-0.63)    | 0.33 (0.20-0.51)    | 0.42 (0.27-0.68)    |
| LAB       | - | 0.87 (0.64-1.16)    | 0.94 (0.72-1.23)    | 0.83 (0.64-1.06)    | 0.55 (0.39-0.77)    |
| KLP       | - | 0 (0)               | 0.53 (0.31-0.83)    | 0.65 (0.43-0.96)    | 0.30 (0.17-0.52)    |
| KEM       | - | 0.30 (0.17-0.46)    | 0.44 (0.28-0.65)    | 0.67 (0.48-0.94)    | 0.49 (0.32-0.70)    |
| ТМ        | - | 0.76 (0.49-1.13)    | 0.68 (0.46-0.96)    | 0.60 (0.41-0.84)    | 0.41 (0.27-0.61)    |
| SGT       | - | 0.74 (0.51-1.03)    | 0.73 (0.54-0.99)    | 0.50 (0.35-0.71)    | 0.51 (0.34-0.71)    |

The pooled standardized mortality ratio for MOH ICUs in 2015 was 0.69 (95% CI 0.47– 0.95).

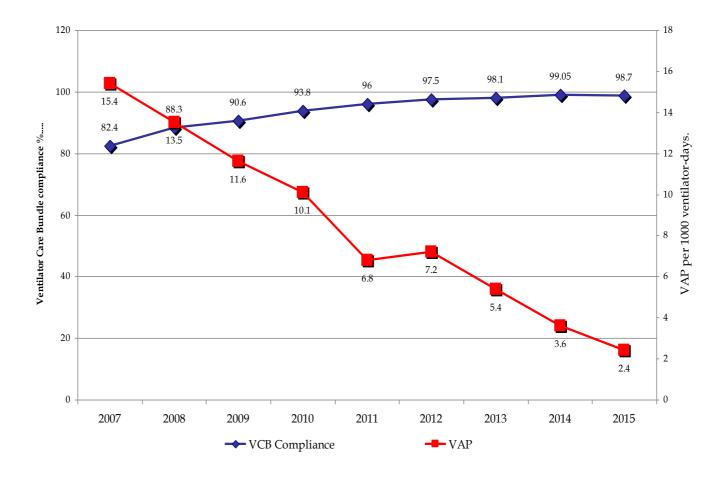
It is observed that the SMR has been steadily decreasing over the years. However, riskadjusted severity scoring systems are known to drift in calibration over time and this may result in lower SMR over the years.

### **SECTION F:**

### **QUALITY IMPROVEMENT ACTIVITIES**

- 1. Ventilator Care Bundle
- 2. Central Venous Catheter Care Bundle
- 3. Early Mobility in ICU
- 4. SSKIN Care Bundle

### VENTILATOR CARE BUNDLE


### Table 43 :Ventilator Care Bundle Compliance, by individual hospital 2011 - 2015

| Hospital | % Compliance<br>Year |      |       |        |        |  |  |
|----------|----------------------|------|-------|--------|--------|--|--|
|          | 2011                 | 2012 | 2013  | 2014   | 2015   |  |  |
| AS       | 95.85                | 97.6 | 100.0 | 100.00 | 100.00 |  |  |
| PP       | 94.79                | 92.8 | 93.5  | 92.74  | 94.83  |  |  |
| IPH      | 98.65                | 98.5 | 97.8  | 97.02  | 96.43  |  |  |
| KL       | 94.70                | 96.6 | 96.2  | 96.19  | 95.75  |  |  |
| SLG      | 96.38                | 96.8 | 96.1  | 96.20  | 92.00  |  |  |
| KLG      | 94.46                | 95.3 | 97.4  | 99.07  | 98.84  |  |  |
| SBN      | 100.00               | 99.4 | 100.0 | 100.00 | 100.00 |  |  |
| MLK      | 98.36                | 100  | 99.3  | 99.23  | 100.00 |  |  |
| JB       | 98.97                | 99.2 | 99.5  | 99.42  | 97.79  |  |  |
| KTN      | 98.13                | 98.4 | 100.0 | 99.32  | 99.84  |  |  |
| KT       | 98.71                | 97.9 | 100.0 | 100.00 | 100.00 |  |  |
| KB       | 100.00               | 100  | 100.0 | 100.00 | 100.00 |  |  |
| КСН      | 92.08                | 97.2 | 96.1  | 96.41  | 99.72  |  |  |
| KK       | 72.41                | 100  | 98.5  | 99.7   | 100.00 |  |  |
| SP       | 100.00               | 100  | 100.0 | 92.96  | 96.00  |  |  |
| РЈҮ      | 100.00               | 100  | 100.0 | 100.00 | 100.00 |  |  |
| MUR      | 100.00               | 100  | 99.1  | 100.00 | 100.00 |  |  |
| ГІ       | 91.04                | 100  | 100.0 | 100.00 | 100.00 |  |  |
| TPG      | 98.11                | 98.4 | 97.9  | 100.00 | 99.24  |  |  |
| SJ       | 98.70                | 100  | 100.0 | 100.00 | 100.00 |  |  |
| KJG      | 100.00               | 100  | 100.0 | 100.00 | 100.00 |  |  |
| KGR      | 100.00               | 100  | 100.0 | 100.00 | 100.00 |  |  |
| TML      | 97.60                | 97.2 | 99.0  | 96.82  | 93.66  |  |  |
| KP       | 95.31                | 98.1 | 100.0 | 99.28  | 100.00 |  |  |
| SMJ      | 96.15                | 98.5 | 100.0 | 100.00 | 100.00 |  |  |
| BP       | 95.31                | 96.7 | 99.5  | 97.55  | 100.00 |  |  |
| ΓW       | 94.44                | 100  | 100.0 | 100.00 | 100.00 |  |  |
| MRI      | 87.61                | 100  | 100.0 | 100.00 | 100.00 |  |  |
| KLM      | 86.77                | 93.9 | 94.7  | 96.85  | 97.14  |  |  |
| SDG      | 96.04                | 100  | 100.0 | 100.00 | 100.00 |  |  |
| SB       | -                    | 95.9 | 97.2  | 100.00 | 100.00 |  |  |
| DKS      | -                    | 100  | 100.0 | 100.00 | 100.00 |  |  |
| 51       | -                    | 91.3 | 92.9  | 90.00  | 98.95  |  |  |
| SBL      | -                    | 99.8 | 100.0 | 98.97  | 100.00 |  |  |
| AMP      | -                    | 95.0 | 94.4  | 93.62  | 96.40  |  |  |
| LIK      | -                    | 100  | 100.0 | 100.00 | 100.00 |  |  |
| UMMC     |                      |      | 100.0 | 100.00 | 100.00 |  |  |
| LKW      | -                    | 74.2 | 90.4  | 100.00 | 100.00 |  |  |
| BM       | -                    | 100  | 100.0 | 97.85  | 100.00 |  |  |

| SLR   | -     | 92.0 | 89.4  | 93.33  | 100.00 |
|-------|-------|------|-------|--------|--------|
| PD    | -     | 100  | 100.0 | 100.00 | 100.00 |
| KKR   | -     | 100  | 100.0 | 100.00 | 100.00 |
| SGT   | -     | 100  | 91.7  | 100.00 | 97.50  |
| TM    |       |      | 100.0 | 100.00 | 100.00 |
| KEM   | -     | 100  | 100.0 | 100.00 | 100.00 |
| LAB   | -     | 100  | 100.0 | 100.00 | 100.00 |
| KEN   | -     | 100  | 100.0 | 100.00 | 100.00 |
| BIN   | -     | 97.6 | 95.7  | 100.00 | 100.00 |
| LD    | -     | 100  | 98.8  | 100.00 | 100.00 |
| Total | 96.00 | 97.5 | 98.2  | 99.05  | 98.70  |

The overall VCB compliance rate for 2015 was 98.7%. VCB compliance is one of the key performance indicators for the Anaesthesia program in MOH. All centres had VCB compliance rates above 85%, which is the target set for this indicator.

### Figure 29 : Ventilator care bundle compliance and ventilator-associated pneumonia rates 2007 – 2015



# Table 44 :Ventilator Utilisation Ratio, Ventilator Care Bundle Compliance and<br/>Incidence of Ventilator-associated Pneumonia (VAP), by individual<br/>hospital 2015

| Hospitals | Ventilator utilisation ratio | Ventilator care bundle<br>compliance | Incidence of VAP per 1000<br>ventilator-days |
|-----------|------------------------------|--------------------------------------|----------------------------------------------|
| AS        | 0.77                         | 100.0                                | 1.46                                         |
| PP        | 0.78                         | 94.8                                 | 3.16                                         |
| IPH       | 0.72                         | 96.4                                 | 4.69                                         |
| KL        | 0.72                         | 95.8                                 | 3.29                                         |
| SLG       | 0.78                         | 92.0                                 | 7.03                                         |
| KLG       | 0.40                         | 98.8                                 | 0.40                                         |
| SBN       | 0.82                         | 100.0                                | 1.65                                         |
| MLK       | 0.60                         | 100.0                                | 1.09                                         |
| JB        | 0.84                         | 97.8                                 | 0.00                                         |
| KTN       | 0.81                         | 99.8                                 | 0.20                                         |
| KT        | 0.70                         | 100.0                                | 1.29                                         |
| КВ        | 0.69                         | 100.0                                | 0.00                                         |
| КСН       | 0.83                         | 99.7                                 | 2.07                                         |
| KK        | 0.68                         | 100.0                                | 2.72                                         |
| SP        | 0.64                         | 96.0                                 | 0.95                                         |
| РЈҮ       | 0.59                         | 100.0                                | 2.11                                         |
| MUR       | 0.85                         | 100.0                                | 0.63                                         |
| TI        | 0.48                         | 100.0                                | 7.11                                         |
| TPG       | 0.81                         | 99.2                                 | 1.25                                         |
| SJ        | 0.81                         | 100.0                                | 2.86                                         |
| KJG       | 0.62                         | 100.0                                | 6.10                                         |
| KGR       | 0.64                         | 100.0                                | 6.57                                         |
| TML       | 0.73                         | 93.7                                 | 6.27                                         |
| KP        | 0.74                         | 100.0                                | 1.09                                         |
| SMJ       | 0.52                         | 100.0                                | 1.19                                         |
| BP        | 0.82                         | 100.0                                | 0.00                                         |
| TW        | 0.62                         | 100.0                                | 0.00                                         |
| MRI       | 0.83                         | 100.0                                | 2.71                                         |
| KLM       | 0.85                         | 97.1                                 | 4.15                                         |
| SDG       | 0.64                         | 100.0                                | 1.53                                         |
| SB        | 0.89                         | 100.0                                | 3.32                                         |
| DKS       | 0.79                         | 100.0                                | 2.47                                         |
| SI        | 0.79                         | 99.0                                 | 0.41                                         |
| SBL       | 0.68                         | 100.0                                | 4.00                                         |
| AMP       | 0.71                         | 96.4                                 | 2.54                                         |
| LIK       | 0.43                         | 100.0                                | 0.00                                         |
| LKW       | 0.43                         | 100.0                                | 0.11                                         |
| BM        | 0.73                         | 100.0                                | 1.28                                         |
| SLR       | 0.73                         | 100.0                                | 4.79                                         |
| PD        | 0.21                         | 100.0                                | 2.57                                         |
| KKR       | 0.21                         | 100.0                                | 5.74                                         |
| SGT       | 0.46                         | 97.5                                 | 0.89                                         |
| TM        | 0.61                         | 97.5                                 | 1.67                                         |
|           |                              |                                      |                                              |
| KEM       | 0.66                         | 100.0                                | 0.00                                         |

| KLP           | 0.43 | 100.0 | 0.00  |
|---------------|------|-------|-------|
| LAB           | 0.70 | 100.0 | 12.44 |
| KEN           | 0.60 | 100.0 | 1.32  |
| BIN           | 0.75 | 100.0 | 2.40  |
| LD            | 0.90 | 100.0 | 0.00  |
| MOH Hospitals | 0.71 | 98.6  | 2.38  |
| UMMC          | 0.77 | 100.0 | 7.1   |

Ventilator care bundle was initiated in 18 General Intensive Care Units (GICUs) in MOH hospitals in December 2006. It was extended to another 12 GICUs in August 2007 and finally to all participating ICUs by January 2012. This evidence-based practice, advocated by the Institute for Healthcare Improvement 100,000 Lives Campaign, has been shown to reduce ventilator associated pneumonia (VAP) if the compliance to the practice is good [30].

Since then, monitoring ventilator care bundle compliance and ventilator associated pneumonia has been part of the quality initiative activities to improve care of critically ill patients on ventilator.

However, the use of ventilator-days in calculating incidence of VAP may pose high standard error of an individual rate measurement if the denominator for the surveillance period is small. In addition, use of ventilator-days does not adjust fully for the difference of patient case mix. Ventilator utilization ratio can be used to better reflect different case mix. It is calculated by the number of patient-days divided by number of ventilator-days.

Ventilator utilisation ratio varies by type of ICU due to patient case mix. It is dependent on patient disease severity, which affects the need to ventilate a patient. It is also a reflection on weaning practice or policy in the unit.

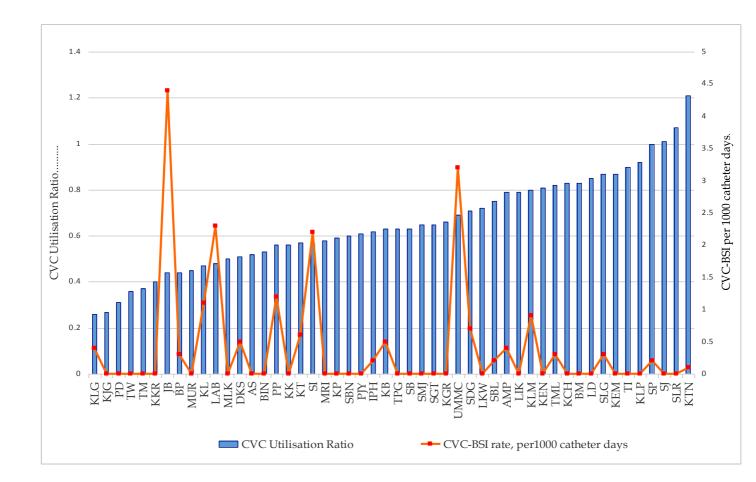
It can be expected that ICUs with low ventilator utilization ratio and high ventilator care bundle compliance have low incidence of VAP.

#### **CENTRAL VENOUS CATHETER (CVC) CARE BUNDLE**

Central venous catheter (CVC) care bundle was initiated in ICUs in MOH hospitals in 2008. This evidence-based practice has been implemented in many units worldwide following landmark studies that demonstrated substantial reduction in CVC-BSI [20], [21].

In the NAICU Report 2007, 66.2% of ICU admissions had central venous catheters in-situ. The incidence of CVC-BSI can be used as a measure of the safety of clinical practice processes within an ICU. CVC care bundle compliance rate and incidence of CVC-BSI are monitored in ICUs in MOH hospitals since October 2012.

Measurement of CVC-BSI as a performance indicator may pose some problems. The clinical decision to obtain blood cultures directly impacts CVC-BSI rates. ICUs that obtain more blood cultures will inevitably document more CVC-BSI. In addition, the definition of CVC-BSI stipulates absence of other sources of infection to explain positive blood cultures. The degree to which an alternate source of infection could explain a positive blood culture, however, also involves subjective judgment.


The denominator used in measurement of CVC-BSI is catheter-days. The catheter-day denominator adjusts for the number of patients with catheters when CVC-BSI rates are compared between units. It is also important to realise that unless the catheter-day denominator for the surveillance period is large, the standard error of an individual rate measurement is high.

The need for placement of CVC is dependent on patient disease severity. However, the use of catheter-days does not adjust fully for the difference of patient case mix. Catheter utilisation ratio can be measured to overcome this problem. It is defined as the ratio of the number of CVC-days divided by the number of patient days during a specific surveillance period. Catheter utilisation ratio varies by type of ICU due to patient case mix. It is dependent on patient disease severity, which affects the need to insert the catheter. It is also a reflection on the catheter removal practice or policy in the unit.

# Table 45 :Catheter Utilisation Ratio, Central Venous Catheter Care Bundle<br/>Compliance and incidence of central venous catheter-related blood stream<br/>infection (CVC-BSI), by individual hospital 2013 – 2015

| Hospitals | Central Venous Catheter<br>utilisation ratio |      |      | CVC care bundle compliance |       |       | Incidence of CVC-BSI per<br>1000 catheter days |      |      |  |
|-----------|----------------------------------------------|------|------|----------------------------|-------|-------|------------------------------------------------|------|------|--|
|           | 2013                                         | 2014 | 2015 | 2013                       | 2014  | 2015  | 2013                                           | 2014 | 2015 |  |
| AS        | 0.46                                         | 0.57 | 0.52 | 100.0                      | 100.0 | 100.0 | 0.0                                            | 0.0  | 0.0  |  |
| PP        | 0.80                                         | 0.62 | 0.56 | 100.0                      | 100.0 | 100.0 | 2.6                                            | 3.5  | 1.2  |  |
| IPH       | 0.48                                         | 0.46 | 0.62 | 95.7                       | 90.3  | 91.7  | 0.3                                            | 0.0  | 0.2  |  |
| KL        | 0.49                                         | 0.46 | 0.47 | 100.0                      | 100.0 | 99.6  | 1.5                                            | 0.2  | 1.1  |  |
| SLG       | 0.91                                         | 0.86 | 0.87 | 90.8                       | 92.1  | 98.0  | 0.0                                            | 0.0  | 0.3  |  |
| KLG       | 0.27                                         | 0.27 | 0.26 | 100.0                      | 100.0 | 100.0 | 0.0                                            | 0.0  | 0.4  |  |
| SBN       | 0.42                                         | 0.52 | 0.60 | 99.5                       | 100.0 | 100.0 | 0.9                                            | 0.7  | 0.0  |  |
| MLK       | 0.62                                         | 0.42 | 0.50 | 99.1                       | 93.8  | 96.9  | 0.0                                            | 0.0  | 0.0  |  |
| JB        | 0.32                                         | 0.44 | 0.44 | 96.3                       | 93.8  | 89.6  | 16.4                                           | 11.3 | 4.4  |  |
| KTN       | 1.23                                         | 1.29 | 1.21 | 100.0                      | 100.0 | 100.0 | 0.0                                            | 0.0  | 0.1  |  |

| KT        | 0.54 | 0.67 | 0.57 | 100.0 | 100.0 | 100.0 | 0.3 | 0.3 | 0.6 |
|-----------|------|------|------|-------|-------|-------|-----|-----|-----|
| КВ        | 0.73 | 0.56 | 0.63 | 100.0 | 97.5  | 100.0 | 0.4 | 0.3 | 0.5 |
| КСН       | 0.78 | 0.79 | 0.83 | 100.0 | 100.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| KK        | 0.71 | 0.57 | 0.56 | 95.1  | 97.0  | 95.1  | 0.2 | 0.0 | 0.0 |
| SP        | 1.54 | 0.84 | 1.00 | 100.0 | 100.0 | 100.0 | 0.0 | 0.0 | 0.2 |
| РЈҮ       | 0.71 | 0.74 | 0.61 | 100.0 | 100.0 | 100.0 | 0.7 | 0.5 | 0.0 |
| MUR       | 0.36 | 0.41 | 0.45 | 100.0 | 100.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| TI        | 0.75 | 0.21 | 0.90 | 100.0 | 100.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| TPG       | 0.53 | 0.55 | 0.63 | 100.0 | 100.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| SJ        | 0.77 | 1.14 | 1.01 | 100.0 | 100.0 | 100.0 | 0.0 | 1.0 | 0.0 |
| KJG       | 0.34 | 0.35 | 0.27 | 100.0 | 100.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| KGR       | 0.80 | 0.62 | 0.66 | 100.0 | 100.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| TML       | 0.95 | 0.74 | 0.82 | 100.0 | 100.0 | 100.0 | 0.4 | 0.0 | 0.3 |
| КР        | 0.61 | 0.52 | 0.59 | 100.0 | 97.0  | 100.0 | 0.0 | 0.0 | 0.0 |
| SMJ       | 0.54 | 0.72 | 0.65 | 100.0 | 100.0 | 100.0 | 2.7 | 0.0 | 0.0 |
| BP        | 0.46 | 0.55 | 0.44 | 91.1  | 93.3  | 100.0 | 2.1 | 0.0 | 0.3 |
| TW        | 0.53 | 0.42 | 0.36 | 86.8  | 96.1  | 100.0 | 0.0 | 0.0 | 0.0 |
| MRI       | 0.33 | 0.36 | 0.58 | 100.0 | 100.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| KLM       | 0.93 | 0.87 | 0.80 | 95.5  | 95.4  | 98.5  | 0.0 | 0.0 | 0.9 |
| SDG       | 0.41 | 0.70 | 0.71 | 100.0 | 100.0 | 100.0 | 0.0 | 0.0 | 0.7 |
| SB        | 0.89 | 1.05 | 0.63 | 92.9  | 100.0 | 100.0 | 0.0 | 0.3 | 0.0 |
| DKS       | 0.58 | 0.40 | 0.51 | 100.0 | 100.0 | 100.0 | 0.0 | 0.0 | 0.5 |
| SI        | 0.80 | 0.67 | 0.57 | 97.1  | 95.5  | 96.2  | 0.0 | 0.0 | 2.2 |
| SBL       | 0.87 | 0.89 | 0.75 | 100.0 | 100.0 | 100.0 | 0.4 | 0.9 | 0.2 |
| AMP       | 0.92 | 0.84 | 0.79 | 82.4  | 86.6  | 92.8  | 0.0 | 0.0 | 0.4 |
| LIK       | 0.36 | 0.38 | 0.79 | 100.0 | 100.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| LKW       | 0.73 | 0.26 | 0.72 | 100.0 | 100.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| BM        | 0.80 | 0.57 | 0.83 | 93.1  | 96.9  | 100.0 | 0.0 | 0.0 | 0.0 |
| SLR       | 1.00 | 1.20 | 1.07 | 100.0 | 100.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| PD        | 0.31 | 0.36 | 0.31 | 100.0 | 100.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| KKR       | 0.59 | 0.60 | 0.40 | 99.1  | 100.0 | 100.0 | 1.2 | 0.0 | 0.0 |
| SGT       | 0.85 | 1.06 | 0.65 | 85.0  | 90.1  | 92.6  | 2.2 | 0.0 | 0.0 |
| TM        | 0.64 | 0.52 | 0.37 | 77.6  | 100.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| KEM       | 0.16 | 0.74 | 0.87 | 100.0 | 100.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| KLP       | 0.72 | 1.37 | 0.92 | 100.0 | 100.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| LAB       | 0.50 | 0.64 | 0.48 | 100.0 | 100.0 | 100.0 | 0.0 | 0.0 | 2.3 |
| KEN       | 0.08 | 0.63 | 0.81 | 100.0 | 100.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| BIN       | 0.60 | 0.39 | 0.53 | 100.0 | 100.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| LD        | 0.70 | 0.60 | 0.85 | 100.0 | 100.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| MOH       | 0.64 | 0.63 | 0.63 | 97.5  | 98.4  | 98.9  | 0.8 | 0.7 | 0.4 |
| Hospitals |      |      |      |       |       |       |     |     |     |
| UMMC      | 0.39 | 0.64 | 0.69 | 100.0 | 100.0 | 100.0 | 0.0 | 0.4 | 3.2 |



### Figure 30: Catheter Utilisation Ratio and Incidence of central venous catheter-related blood stream infection (CVC-BSI), by hospital 2015

| National Hea                                   | National Healthcare Safety Network (NHSN) report, data summary for 2013 [23] |                                |                  |                  |                  |                  |                  |  |  |  |  |
|------------------------------------------------|------------------------------------------------------------------------------|--------------------------------|------------------|------------------|------------------|------------------|------------------|--|--|--|--|
| T (101)                                        |                                                                              | CVC-BSI per 1000 catheter days |                  |                  |                  |                  |                  |  |  |  |  |
| Types of ICU                                   | Catheter<br>utilisation                                                      | Pooled                         |                  |                  | Percentile       | 2                |                  |  |  |  |  |
|                                                | ratio                                                                        | mean                           | 10 <sup>th</sup> | 25 <sup>th</sup> | 50 <sup>th</sup> | 75 <sup>th</sup> | 90 <sup>th</sup> |  |  |  |  |
| Mixed medical/<br>surgical > 15 beds           | 0.49                                                                         | 0.8                            | 0.0              | 0.0              | 0.6              | 1.2              | 2.0              |  |  |  |  |
| Mixed medical∕<br>surgical <u>&lt;</u> 15 beds | 0.37                                                                         | 0.8                            | 0.0              | 0.0              | 0.0              | 1.0              | 2.4              |  |  |  |  |
| Neurosurgical                                  | 0.43                                                                         | 0.9                            | 0.0              | 0.0              | 0.7              | 1.4              | 2.2              |  |  |  |  |
| Surgical                                       | 0.55                                                                         | 0.9                            | 0.0              | 0.0              | 0.7              | 1.4              | 2.5              |  |  |  |  |
| Trauma                                         | 0.53                                                                         | 1.4                            | 0.0              | 0.5              | 1.2              | 2.1              | 3.4              |  |  |  |  |

| Organisms                                | 2013       | 2014      | 2015     |
|------------------------------------------|------------|-----------|----------|
|                                          | n (%)      | n (%)     | n (%)    |
| Klebsiella spp.                          | 25 (34.2)  | 30 (39.0) | 25(19.4) |
| MRO                                      | 8          | 23        | 17       |
| Non-MRO                                  | 17         | 7         | 8        |
| Acinetobacter spp.                       | 12 (16.4)  | 20 (26.0) | 22(17.1) |
| MRO                                      | 5          | 18        | 15       |
| Non-MRO                                  | 7          | 2         | 7        |
| Pseudomonas aeruginosa                   | 15 (20.5)  | 14 (18.2) | 19(14.7) |
| MRO                                      | 0          | 2         | 2        |
| Non-MRO                                  | 15         | 12        | 17       |
| Enterobacter spp.                        | 0 (0.0)    | 6 (7.8)   | 3(2.3)   |
| MRO                                      | 0          | 3         | 2        |
| Non- MRO                                 | 0          | 3         | 1        |
| Stenotrophomonas maltophilia             | 3 (4.1)    | 0 (0)     | 3(2.3)   |
| Other gram negative bacteria             | 5 (6.8)    | 1 (1.3)   | 16(12.4) |
| MRO                                      | 2          | 0         | 8        |
| Non-MRO                                  | 3          | 1         | 8        |
| Staphylococcus aureus                    | 7 (9.6)    | 3 (3.9)   | 11(8.5)  |
| MRSA                                     | 7          | 2         | 4        |
| MSSA                                     | 0          | 1         | 6        |
| VRSA                                     |            |           | 1        |
| Coagulase negative <i>Staphylococcus</i> | 3 (4.1)    | 1 (1.3)   | 24(18.6) |
| Methicillin resistant                    | 2          | 1         | 11       |
| Methicillin sensitive                    | 1          | 0         | 13       |
| Enterococcus faecium                     | 0 (0)      | 1 (1.3)   | 1(0.8)   |
| Fungal                                   | 3 (4.1)    | 1 (1.3)   | 5(3.9)   |
| Total                                    | 73 (100.0) | 77 (100)  | 129(100) |

#### Table 46 :Bacteriological cultures in CVC-BSI 2013 - 2015

The mean compliance rate to CVC care bundle in MOH ICUs in 2015 was 98.9%. The incidence of CVC-BSI was 0.4 per 1000 catheter days (compare with 0.7 in 2014). This was comparable when benchmarked with that of US National Healthcare Safety Network (NHSN) [23]; as shown in the table above. However, there was a high possibility of under diagnosis and under reporting in many MOH ICUs.

The pooled catheter utilization ratio was 0.63, which was higher than the benchmark.

Gram-negative organisms accounted for 92% and 68% of causative organisms for CVC-BSI in 2014 and 2015 respectively. The predominant organisms isolated were *Klebsiella pneumonia* followed by *Acinetobacter sp.* and *Pseudomonas aeruginosa* for both years.

In 2015, gram-positive organisms and fungus accounted for 28% and 4% of causative organisms for CVC-BSI respectively. Coagulase-negative staphylococcus and methicillin-

resistant staphylococcus aureus accounted for 67% and 11% respectively among among gram-positive organisms.

Majority of CRBSIs are associated with CVCs, and in prospective studies, the relative risk for CRBSI is up to 64 times greater with CVCs than with peripheral venous catheters.

The risk of CRBSI is considerably higher in the ICU population than in the non-ICU population. One of the main reasons for this was the frequent insertion of multiple catheters. Moreover the catheters may have been placed in emergency circumstances, repeatedly accessed each day, and often needed for extended periods.

Meta-analytical study done at the Johns Hopkins University showed that bloodstream infections were the third leading cause of hospital-acquired infections. These infections have an attributable mortality rate of 12% to 25%. Individuals counteract 250,000 bloodstream infections each year in the United States and over 80,000 of these appeared in ICUs. These infections were associated with increased length of hospital stay from 10 to 20 days and increased in the cost of care [25]. 60% of CRBSIs were caused by micro-organisms from the patient's skin. 64% of the pathogens causing CRBSI were gram-positive and 36% were gram-negative.

In a recent meta-analysis of CRBSIs, gram-positive cocci constituted 27% of isolates and gram-negative bacilli contributed 56%. The proportion of gram-negative CRBSI was much higher than that reported in western hospitals [22].

Pronovost's Michigan Health and Hospital Association (MHA) Keystone Center for Patient Safety and Quality Keystone ICU project is one of the most successful recent collaborative efforts to reduce CRBSIs. The Keystone Project involved the contribution and analysis of data from 103 ICUs in 67 hospitals. These hospitals implemented five evidence-based procedures (hand washing, use of full-barrier precautions during CVC insertion, skin cleaning with chlorhexidine, avoiding the use of the femoral site and removal of unnecessary catheters) and were able to reduce the median rate of CRBSI infections per 1000 catheter-days from 2.7 infections at baseline to 0 infection at 3 months after implementation of the study intervention ( $p \le 0.002$ ) [21].

In the UK, CRBSI accounts for 10% to 20% of hospital-acquired infections and is associated with both increased ICU stay and mortality [21].

#### EARLY MOBILITY IN ICU

A high proportion of patients who survive intensive care suffer from significant physical disabilities secondary to neuromuscular weakness from critical illness, prolonged bed rest, and immobility. Evidence suggests that early mobilisation in mechanically ventilated patients mitigates the physical, cognitive and psychological complications of critical illness [26]. Early mobilisation has also been shown to decrease the duration of mechanical ventilation and hospital length of stay [27], [28].

Early mobility therapy is a quality improvement initiative introduced in the ICUs in MOH hospitals in the second half of the year 2013. This is a multi-disciplinary team effort involving the clinicians, nurses and physiotherapists to ensure that early mobility becomes a routine part of care for all patients admitted to the intensive care unit. The Early Mobility Protocol consists of 4 levels of physical activity and progression from one level to another depends on the conscious state and functional ability of the patient. Activities in this protocol include body positioning, passive and active range of limb motions, sitting to walking.

Compliance to the protocol is calculated as the percent of actual number of activities performed against the expected to be performed for the highest level of mobility for all patients in the ICU.

In 2015, 43 MOH hospitals (compared with 40 in 2014) reported their compliance rate to the Early Mobility Protocol. The compliance rate ranged from 32.9% to 100%, with an average of 71.5%. Some of the barriers identified to the implementation of the protocol included concerns on the safety of mobilisation of ventilated patients, lack of resources (both staff and equipment) and excessive sedation and delirium.

LGW did not report their compliance rates to the protocol in 2014 and 2015.

5 hospitals (KLP, KEN, KEM, TM, BM) did not receive training in the Early Mobility in ICU workshops due to logistical reasons. These centres were not obliged to report compliance rates to this protocol

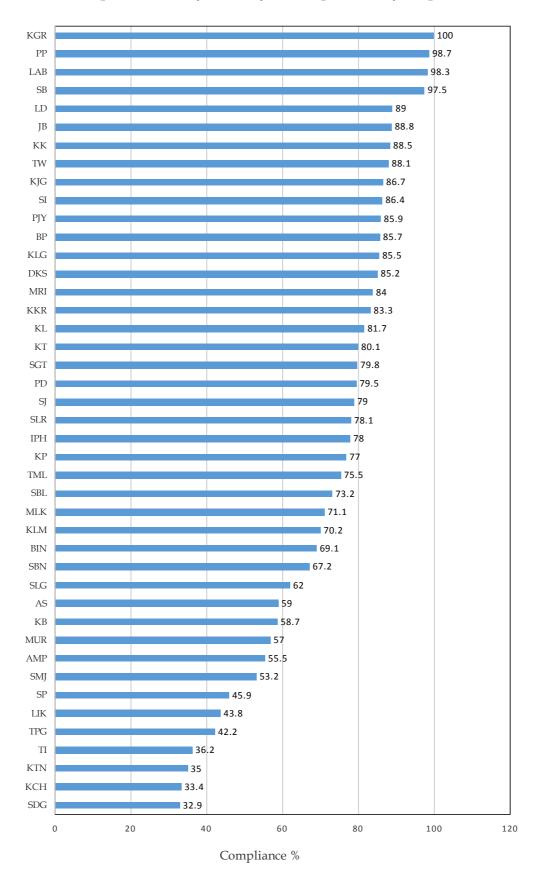



Figure 31: Compliance to Early Mobility in ICU protocol, by hospital 2015

#### SSKIN CARE BUNDLE

Critically ill patients are at high risk for development of pressure ulcers. Haemodynamic instability and presence of multiple medical devices contributes to inability to position patients, hence increase the risk of pressure ulcer development. These patients are also at risk of medical device related pressure ulcers.

Due to the huge impact of pressure ulcers on patients and healthcare costs, it is imperative that effective measures are taken to prevent the development of pressure ulcers in these high risk patients.

The SSKIN care bundle was introduced to MOH ICUs as one of the means to prevent pressure ulcers in 2014.

In October 2014, 25 MOH ICUs received training in the SSKIN care bundle. By November 2015, 49 ICUs in MOH hospitals have received training in this bundle.

| S | Surface         | Ensure patients have the right surface support                                 |
|---|-----------------|--------------------------------------------------------------------------------|
| S | Skin Inspection | Inspect skin regularly to detect any changes and institute early interventions |
| К | Keep Moving     | Position patients regularly                                                    |
| Ι | Incontinence    | Promote good skin care by keeping skin clean and well moisturised              |
| Ν | Nutrition       | Ensure adequate nutrition and hydration                                        |

SSKIN care bundle identifies five key aspects of care that are:

Audit of compliance with the SSKIN care bundle is carried out monthly. Compliance with the bundle is measured by assessment of the completion of all components over the same period of time, an "all or none" strategy.

In 2015, 24 ICUs (LIK, SP, SMJ, AMP, MUR, BIN, KP, SLR, SJ, PD, SGT, KKR, DKS, BP, SI, TW, LD, LAB, LGW, TM, KEN, BM, KLP and KEM) did not report on compliance with SSKIN care bundle as it was introduced only towards the end of 2015 in these units.

The compliance rate for 24 ICUs varied from 62.3% to 100% between units with a mean of 89.8%.

KT did not report on compliance with this bundle in 2015.

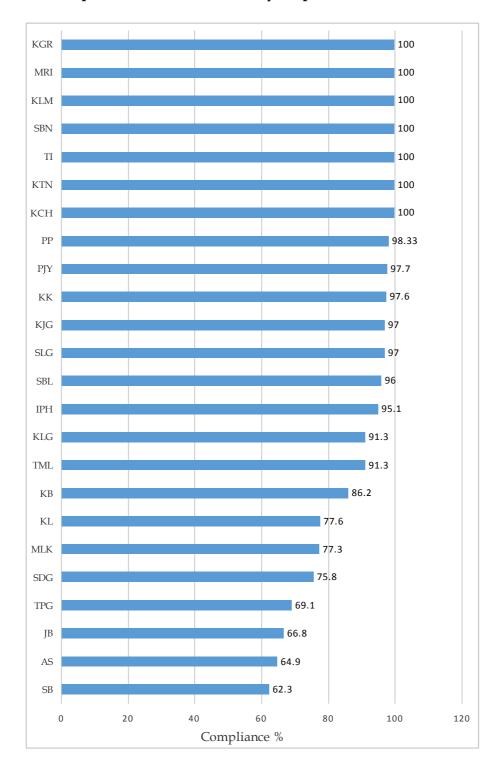



Figure 32 : Compliance to SSKIN Bundle, by hospital 2015

### **SECTION G:**

REPORT ON DENGUE INFECTION IN MOH ICUs 2010 - 2015

### Report on patients with dengue infection who were admitted to the intensive care units in the Ministry of Health hospitals from 2010 - 2015

The year 2015 was characterized by large dengue outbreaks worldwide. In Malaysia, the number of dengue cases reported by the Ministry of Health Malaysia has increased remarkably over the last two years. The number of dengue cases was 120,836 in 2015 [29], an increase of 11.2% from 108,698 in 2014. The number of cases in 2014 was actually a 151% increase from 43,346 in 2013 [19] [24]. The number of dengue cases in 2012, 2011 and 2010 were 21,900, 19,884 and 46,171 respectively [16] [17] [18].

Admissions with dengue infection to ICU had also increased in tandem with the increase in the number of dengue cases reported by the Ministry of Health. The percentage of dengue admission to ICU was 6.1 in 2010, 2.7 in 2011, 2.7 in 2012, 4.1 in 2013, 8.4 in 2014 and 9.1 in 2015. Dengue infection was the most common diagnosis leading to ICU admission for two years now.

Demographics for the patients who were admitted to ICU had not varied much over the last 6 years. However, the crude in-hospital mortality increased over the years from 5.6% in 2011 to 8.9% in 2015. The SMR also increased from 0.50 in 2011 to 0.80 in 2015.

The majority of patients admitted to ICU with dengue infection were young, with a median age of 31.7 years in 2015. The median interval from hospital to ICU admission was short, being further shortened to 8 hours compared to 9.6 hours in the previous year.

The median length of ICU stay for dengue patients had been short (1.9 to 2 days) over the 6 years, shorter than that of all ICU admissions (2.4 to 2.6 days), except in year 2014 when it was longer.(2.8 days compared to 2.5 days). The median length of hospital stay for dengue admissions was shorter compared with that of all ICU admissions all these years.

The median length of mechanical ventilation for dengue admissions was longer than that of all ICU admissions all these years. It was also longer than the median length of ICU stay. This could be explained by the fact that only less than 20% of the dengue patients were ventilated.

Patients with dengue infection had a much lower SAPS II score on ICU admission compared with the rest of the ICU admissions (mean SAPS II score of 19.3 vs. 35.0).

Haematological failure remained the main organ failure on ICU admission over the past 6 years.

The number of patients with dengue infection who also had associated co-morbid diseases has increased over the years. It made up 26.4% of the dengue patients admitted to ICU.

|                                                                  | Dengue<br>Infection<br>2010<br>n = 1643 | Dengue<br>Infection<br>2011<br>n = 798 | Dengue<br>Infection<br>2012<br>n = 906 | Dengue<br>Infection<br>2013<br>n=1550 | Dengue<br>Infection<br>2014<br>n=3261      | Dengue<br>Infection<br>2015<br>n=3601      |
|------------------------------------------------------------------|-----------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------|--------------------------------------------|--------------------------------------------|
| Age, years<br>median (IQR)                                       | 28.8<br>(22.5 - 47.3)                   | 29.5<br>(21.0 – 44.1)                  | 32.8<br>(21.5-41.8)                    | 31.3<br>(21.7-46.1)                   | 34.6<br>(22.0-45.4)                        | 31.7<br>(22.3-47.8)                        |
| Interval from hospital<br>to ICU admission, days<br>median (IQR) | Not available                           | 0.5<br>(0.1 – 1.3)                     | 0.5<br>(0.1-1.3)                       | 0.5<br>(0.1-1.4)                      | 0.4<br>(0.1-1.2)                           | 0.3<br>(0.1-0.9)                           |
| Length of ICU stay,<br>days<br>median (IQR)                      | 1.9<br>(1.9 - 9.6)                      | 2.0<br>(1.3 - 3.0)                     | 1.9<br>(1.2-2.7)                       | 1.9<br>(1.3-2.9)                      | 2.8<br>(1.3-3.1)                           | 2.0<br>(1.3-3.1)                           |
| Length of hospital stay,<br>days<br>median (IQR)                 | 5.5<br>(3.4 – 17.5)                     | 5.8<br>(4.1 - 8.3)                     | 5.2<br>(3.9-7.2)                       | 5.3<br>(3.9-7.2)                      | 7.1<br>(3.8-7.2)                           | 5.1<br>(3.7-7.2)                           |
| Length of mechanical<br>ventilation, days<br>median (IQR)        | 3.8<br>(1.4 - 7.2)                      | 3.6<br>(1.6 - 7.9)                     | 4.2<br>(1.0-5.0)                       | 2.9<br>(1.2-6.2)                      | 5.0<br>(1.5-6.5)                           | 2.6<br>(1.3-5.7)                           |
| Total SAPS II score,<br>mean +/-SD<br>Median (IQR)               | 19.0 <u>+</u> 14.1                      | 19.6 <u>+</u> 16.0                     | 17.4 <u>+</u> 13.0                     | 18.6 <u>+</u> 13.2                    | 18.6 <u>+</u> 15.0<br>15.0 (10.0-<br>23.0) | 19.3 <u>+</u> 13.9<br>16.0 (10.0-<br>24.0) |
| % Invasive mechanical ventilation                                | 18.6                                    | 13.8                                   | 9.5                                    | 11.2                                  | 12.1                                       | 15.3                                       |
| % Co-morbid diseases                                             | 18.1                                    | 22.3                                   | 18.3                                   | 25                                    | 22.9                                       | 26.4                                       |
| Main organ failure %                                             |                                         |                                        |                                        |                                       |                                            |                                            |
| Without organ<br>failure                                         | 32.2                                    | 27.3                                   | 35.2                                   | 36.3                                  | 32.4                                       | 30.5                                       |
| Respiratory<br>failure                                           | 4.7                                     | 3.0                                    | 3.3                                    | 2.9                                   | 5.9                                        | 3.7                                        |
| Cardiovascular<br>failure                                        | 7.1                                     | 7.2                                    | 6.9                                    | 6.1                                   | 6.0                                        | 6.1                                        |
| Neurological<br>failure                                          | 0.6                                     | 0.4                                    | 0.1                                    | 0.7                                   | 0.4                                        | 0.4                                        |
| Renal failure                                                    | 0.9                                     | 0.7                                    | 0.8                                    | 1.1                                   | 1.2                                        | 1.8                                        |
| Hepatic failure                                                  | 0.4                                     | 0.1                                    | 0.1                                    | 0.3                                   | 0.4                                        | 0.3                                        |
| Haematological<br>failure                                        | 54.0                                    | 40.9                                   | 53.4                                   | 52.5                                  | 53.6                                       | 57.1                                       |
| SMR (95% CI)                                                     | 0.75<br>(0.42-1.20)                     | 0.50<br>(0.26 – 0.86)                  | 0.51<br>(0.26 - 0.94)                  | 0.50<br>(0.28-0.95)                   | 0.57<br>(0.33-1.05)                        | 0.80<br>(0.43-1.30)                        |

### Table 47 :General comparison for Dengue infection MOH ICUs 2010 - 2015

|          |                          |                                           |                          |                                           | Ye                      | ear                                       |                        |                                           |                         |                                           |  |
|----------|--------------------------|-------------------------------------------|--------------------------|-------------------------------------------|-------------------------|-------------------------------------------|------------------------|-------------------------------------------|-------------------------|-------------------------------------------|--|
| Hospital |                          | 11                                        | 20                       |                                           |                         | 13                                        | 20                     |                                           | 20                      |                                           |  |
| -        | ICU<br>admission         | All-cause<br>In-<br>hospital<br>mortality | ICU<br>admission         | All-cause<br>In-<br>hospital<br>mortality | ICU<br>admission        | All-cause<br>In-<br>hospital<br>mortality | ICU<br>admission       | All-cause<br>In-<br>hospital<br>mortality | ICU<br>admission        | All-cause<br>In-<br>hospital<br>mortality |  |
| AS       | <b>n (%)</b><br>14 (1.2) | <b>n (%)</b><br>0 (0.0)                   | <b>n (%)</b><br>20 (1.7) | <b>n (%)</b><br>0 (0.0)                   | <b>n(%)</b><br>18 (1.3) | <b>n(%)</b><br>1 (5.6)                    | <b>n(%)</b><br>9 (0.7) | <b>n(%)</b><br>1 (11.1)                   | <b>n(%)</b><br>13 (1.1) | <b>n(%)</b><br>1 (7.7)                    |  |
| PP       | 73 (6.1)                 | 1 (1.4)                                   | 14 (1.1)                 | 1 (7.1)                                   | 53 (4.7)                | 5 (9.4)                                   | 77 (6.8)               | 10 (13.0)                                 | 109 (9.7)               | 17 (15.6)                                 |  |
| IPH      | 26 (2.3)                 | 3 (11.5)                                  | 18 (1.9)                 | 2 (11.1)                                  | 57 (4.7)                | 3 (5.3)                                   | 87 (7.1)               | 9 (10.3)                                  | 89 (7.4)                | 19 (21.3)                                 |  |
| KL       | 71 (3.9)                 | 2 (2.8)                                   | 127 (6.4)                | 2 (1.6)                                   | 141 (7.4)               | 4 (2.8)                                   | 429 (20.0)             | 23 (5.4)                                  | 395 (20.6)              | 24 (6.1)                                  |  |
| SLG      | 40 (3.5)                 | 1 (2.5)                                   | 19 (1.5)                 | 0 (0.0)                                   | 76 (5.0)                | 2 (2.6)                                   | 196 (13.7)             | 12 (6.1)                                  | 196 (14.4)              | 26 (13.3)                                 |  |
| KLG      | 98 (6.1)                 | 6 (6.1)                                   | 186 (8.7)                | 10 (5.4)                                  | 190 (9.2)               | 9 (4.8)                                   | 456 (20.0)             | 34 (7.5)                                  | 378 (18.3)              | 29 (7.7)                                  |  |
| SBN      | 15 (2.7)                 | 3 (20.0)                                  | 11 (2.0)                 | 1 (9.1)                                   | 24 (5.1)                | 1 (4.8)                                   | 40 (7.4)               | 5 (12.5)                                  | 68 (13.1)               | 9 (13.2)                                  |  |
| MLK      | 48 (3.0)                 | 4 (8.3)                                   | 38 (2.2)                 | 3 (7.9)                                   | 212 (12.7)              | 14 (6.6)                                  | 123 (8.6)              | 7 (5.7)                                   | 151 (11.0)              | 9 (6.0)                                   |  |
| JB       | 22 (1.3)                 | 3 (13.6)                                  | 23 (1.3)                 | 2 (8.6)                                   | 83 (4.3)                | 17 (20.5)                                 | 75 (4.4)               | 14 (18.7)                                 | 102 (6.3)               | 19 (18.6)                                 |  |
| KTN      | 11 (1.8)                 | 1 (9.1)                                   | 3 (0.5)                  | 0 (0.0)                                   | 23 (2.7)                | 2 (8.6)                                   | 26 (2.4)               | 2 (7.7)                                   | 63 (6.1)                | 11 (17.5)                                 |  |
| KT       | 30 (2.5)                 | 4 (13.3)                                  | 24 (1.8)                 | 1 (4.2)                                   | 19 (1.6)                | 1 (5.3)                                   | 52 (4.4)               | 4 (7.7)                                   | 89 (6.4)                | 9 (10.1)                                  |  |
| KB       | 13 (1.2)                 | 1 (7.7)                                   | 3 (0.2)                  | 0 (0.0)                                   | 25 (1.9)                | 2 (8.0)                                   | 286 (17.8)             | 20 (7.0)                                  | 110 (9.5)               | 7 (6.4)                                   |  |
| КСН      | 10 (1.6)                 | 1 (10.0)                                  | 13 (1.5)                 | 1 (7.7)                                   | 25 (2.6)                | 3 (12.0)                                  | 31 (2.7)               | 2 (6.5)                                   | 17 (1.5)                | 1 (5.9)                                   |  |
| KK       | 19 (2.3)                 | 0 (0.0)                                   | 12 (1.3)                 | 0 (0.0)                                   | 23 (2.3)                | 2 (8.7)                                   | 31 (3.1)               | 1 (3.2)                                   | 75 (9.1)                | 3 (4.0)                                   |  |
| SP       | 5 (1.9)                  | 0 (0.0)                                   | 11 (6.9)                 | 0 (0.0)                                   | 21 (3.6)                | 1 (4.8)                                   | 42 (4.4)               | 8 (19.0)                                  | 91 (9.3)                | 9 (9.9)                                   |  |
| РЈҮ      | 11 (2.0)                 | 1 (9.1)                                   | 10 (1.7)                 | 1 (10.0)                                  | 29 (4.8)                | 1 (3.4)                                   | 56 (8.6)               | 4 (7.1)                                   | 80 (10.8)               | 3 (3.8)                                   |  |
| MUR      | 2 (0.4)                  | 0 (0.0)                                   | 4 (0.6)                  | 0 (0.0)                                   | 15 (2.2)                | 1 (6.7)                                   | 9 (1.5)                | 0 (0.0)                                   | 21 (3.5)                | 4 (19.0)                                  |  |
| TI       | 6 (1.9)                  | 0 (0.0)                                   | 4 (1.0)                  | 1 (25.0)                                  | 6 (1.5)                 | 0 (0.0)                                   | 5 (1.2)                | 1 (20.0)                                  | 23 (5.7)                | 3 (13.0)                                  |  |
| TPG      | 26 (3.0)                 | 2 (7.7)                                   | 43 (3.6)                 | 4 (9.5)                                   | 32 (2.4)                | 1 (3.1)                                   | 52 (4.4)               | 3 (5.8)                                   | 36 (3.4)                | 6 (16.7)                                  |  |
| SJ       | 3 (0.5)                  | 0 (0.0)                                   | 1 (0.2)                  | 0 (0.0)                                   | 5 (1.2)                 | 0 (0.0)                                   | 6 (1.5)                | 0 (0.0)                                   | 13 (2.9)                | 0 (0)                                     |  |
| KJG      | 17 (5.0)                 | 2 (11.8)                                  | 23 (6.2)                 | 1 (4.3)                                   | 27 (8.4)                | 0 (0.0)                                   | 55 (19.4)              | 9 (16.4)                                  | 145 (32.0)              | 13 (9.0)                                  |  |
| KGR      | 1 (0.3)                  | 0 (0.0)                                   | 6 (1.7)                  | 1 (16.7)                                  | 11 (3.4)                | 1 (9.1)                                   | 14 (4.1)               | 0 (0.0)                                   | 23 (6.7)                | 1 (4.3)                                   |  |
| TML      | 28 (5.2)                 | 3 (10.7)                                  | 8 (1.8)                  | 0 (0.0)                                   | 15 (2.5)                | 1 (6.7)                                   | 90 (10.8)              | 6 (6.7)                                   | 83 (10.7)               | 8 (9.6)                                   |  |
| KP       | 3 (0.8)                  | 1 (33.3)                                  | 0 (0.0)                  | 0 (0.0)                                   | 1 (0.3)                 | 0 (0.0)                                   | 21 (4.1)               | 1 (4.8)                                   | 50 (9.9)                | 6 (12.0)                                  |  |
| SMJ      | 7 (1.8)                  | 1 (14.3)                                  | 13 (3.2)                 | 4 (30.8)                                  | 5 (1.3)                 | 0 (0.0)                                   | 11 (2.5)               | 1 (9.1)                                   | 46 (11.3)               | 2 (4.3)                                   |  |
| BP       | 9 (2.0)                  | 0 (0.0)                                   | 6 (1.4)                  | 0 (0.0)                                   | 21 (4.6)                | 2 (9.5)                                   | 14 (3.1)               | 1 (7.1)                                   | 21 (4.1)                | 2 (9.5)                                   |  |
| TW       | 2 (0.7)                  | 0 (0.0)                                   | 9 (2.1)                  | 0 (0.0)                                   | 37 (8.2)                | 2 (5.4)                                   | 50 (10.0)              | 1 (2.0)                                   | 23 (6.0)                | 1 (4.3)                                   |  |
| MRI      | 0 (0.0)                  | 0 (0.0)                                   | 5 (1.0)                  | 3 (60.0)                                  | 16 (3.3)                | 1 (6.2)                                   | 15 (3.5)               | 1 (6.7)                                   | 8 (2.2)                 | 0 (0.0)                                   |  |
| KLM      | 8 (1.6)                  | 1 (12.5)                                  | 9 (1.5)                  | 1 (11.1)                                  | 4 (0.7)                 | 1 (25.0)                                  | 20 (3.6)               | 2 (10.0)                                  | 25 (5.1)                | 4 (16.0)                                  |  |
| SDG      | 50 (5.7)                 | 6 (12.0)                                  | 33 (3.8)                 | 0 (0.0)                                   | 63 (7.4)                | 6 (9.5)                                   | 158 (18.9)             | 9 (5.7)                                   | 187 (25.2)              | 16 (8.6)                                  |  |
| SB       | 1 (0.2)                  | 0 (0.0)                                   | 9 (1.8)                  | 1 (11.1)                                  | 8 (1.6)                 | 1 (12.5)                                  | 13 (3.0)               | 2 (15.4)                                  | 45 (3.6)                | 2 (4.4)                                   |  |
| DKS      | 19 (3.6)                 | 2 (10.5)                                  | 5 (1.0)                  | 0 (0.0)                                   | 15 (1.6)                | 1 (6.7)                                   | 15 (1.6)               | 1 (6.7)                                   | 51 (6.0)                | 5 (9.8)                                   |  |
| SI       | 24 (3.7)                 | 3 (12.5)                                  | 23 (2.9)                 | 3 (13.0)                                  | 96 (9.9)                | 1 (1.0)                                   | 119 (10.5)             | 8 (6.7)                                   | 289 (20.0)              | 17 (5.9)                                  |  |
| SBL      | 62 (4.9)                 | 3 (4.8)                                   | 95 (6.0)                 | 4 (4.2)                                   | 74 (3.9)                | 3 (4.1)                                   | 451 (19.7)             | 24 (5.3)                                  | 274 (12.1)              | 12 (4.4)                                  |  |
| AMP      | 19 (3.4)                 | 0 (0.0)                                   | 4 (0.7)                  | 2 (50.0)                                  | 12 (2.1)                | 1 (8.3)                                   | 38 (6.0)               | 3 (7.9)                                   | 29 (4.4)                | 11 (37.9)                                 |  |
| LIK      | 5 (1.3)                  | 0 (0.0)                                   | 2 (0.7)                  | 0 (0.0)                                   | 3 (0.6)                 | 0 (0.0)                                   | 2 (0.6)                | 0 (0.0)                                   | 2 (1.3)                 | 0 (0.0)                                   |  |
| UMMC     | -                        | -                                         | 3 (0.6)                  | 0 (0.0)                                   | 0 (0.0)                 | 0 (0.0)                                   | 0 (0.0)                | 0 (0.0)                                   | 69 (5.5)                | 4 (5.8)                                   |  |
| LKW      |                          |                                           | 0 (0.0)                  |                                           | 0 (0.0)                 | 0 (0.0)                                   | 0 (0.0)                | 0 (0.0)                                   | 0 (0.0)                 | 0 (0.0)                                   |  |

## Table 48 :Dengue infection by individual hospital and crude all-cause in-hospital<br/>mortality 2011-2015

| Total | 798 (2.9) | 55 (6.4) | 852 (2.6) | 51 (5.6)  | 1553 (4.3) | 92 (5.9) | 3253 (8.6) | 233 (7.1) | 3601 (9.6) | 322 (8.9) |
|-------|-----------|----------|-----------|-----------|------------|----------|------------|-----------|------------|-----------|
| LD    | -         | -        | 4 (2.4)   | 0 (0.0)   | 13 (5.3)   | 0 (0.0)  | 12 (5.5)   | 1 (8.3)   | 2 (1.4)    | 0 (0.0)   |
| BIN   | -         | -        | 2 (0.9)   | 1 (50.0)  | 13 (5.0)   | 1 (7.7)  | 6 (2.1)    | 0 (0.0)   | 3 (1.0)    | 0 (0.0)   |
| KEN   | -         | -        | 1 (1.2)   | 0 (0.0)   | 9 (5.6)    | 0 (0.0)  | 7 (4.9)    | 0 (0.0)   | 6 (4.5)    | 1 (16.7)  |
| LAB   | -         | -        | 1 (0.9)   | 1 (100.0) | 3 (1.8)    | 0 (0.0)  | 2 (1.2)    | 1 (50.0)  | 0 (0.0)    | 0 (0.0)   |
| KLP   | -         | -        | 0 (0.0)   | 0 (0.0)   | 1 (0.9)    | 0 (0.0)  | 3 (3.1)    | 0 (0.0)   | 8 (8.2)    | 0 (0.0)   |
| KEM   |           |          | 0 (0.0)   | 0 (0.0)   | 0 (0.0)    | 0 (0.0)  | 0 (0.0)    | 0 (0.0)   | 11 (6.7)   | 0 (0.0)   |
| TM    | -         | -        | 0 (0.0)   | 0 (0.0)   | 8 (6.3)    | 0 (0.0)  | 5 (3.1)    | 0 (0.0)   | 26 (8.9)   | 1 (3.8)   |
| SGT   | -         | -        | 1 (0.8)   | 0 (0.0)   | 1 (0.6)    | 0 (0.0)  | 2 (1.3)    | 1 (50.0)  | 7 (2.5)    | 3 (42.9)  |
| KKR   | -         | -        | 0 (0.0)   | 0 (0.0)   | 3 (1.3)    | 0 (0.0)  | 12 (4.6)   | 1 (8.3)   | 13 (3.5)   | 1 (7.7)   |
| PD    | -         | -        | 4 (2.0)   | 0 (0.0)   | 12 (4.9)   | 0 (0.0)  | 19 (7.2)   | 0 (0.0)   | 20 (9.7)   | 2 (10.0)  |
| SLR   | -         | -        | 2 (1.3)   | 0 (0.0)   | 4 (1.8)    | 0 (0.0)  | 8 ( 3.6)   | 0 (0.0)   | 13 (7.1)   | 1 (7.7)   |
| BM    | -         | -        | 0 (0.0)   | -         | 1 (0.6)    | 0 (0.0)  | 3 (2.1)    | 0 (0.0)   | 3 (1.5)    | 0 (0.0)   |

#### SUMMARY

- 1. The total number of ICU beds in the 49 MOH participating centres was 660, with a median bed occupancy of 91.6%.
- 2. The number of cases analysed for year 2015 was 39,595 an increase of 1.7% over the previous year.
- 3. The percentage of patients denied admission due to the unavailability of ICU beds was 32% in 2015.
- 4. The average age of patients excluding those below 18 years was 49.5 years.
- 5. In MOH hospitals, foreigners constituted 6% of all ICU admissions.
- 6. The average lengths of ICU and hospital stay were 4.8 and 14.4 days respectively.
- 7. In MOH hospitals, 69% of admissions were non-operative patients, an increase of 7% in the last five years.
- 8. Direct admission to MOH ICUs from the emergency department had steadily increased over the past 10 years from 10% in 2005 to 33% in 2015.
- 9. In MOH ICUs, cardiovascular failure (38%) was the most common organ failure during the first 24 hours of ICU admission, followed by respiratory (24%), neurological (18%), renal (10%), haematological (9%) and hepatic (1%).
- 10. Dengue infection, sepsis and head injury were the three most common diagnoses leading to ICU admission. The in-hospital mortality for this group of patients was 8.9%, 51.2% and 22.0% respectively.
- 11. During the first 24 hours of ICU admission, 18%, 7% and 15% of patients had severe sepsis, acute respiratory distress syndrome and acute kidney injury respectively.
- 12. The average SAPS II score was 36.8, which carries a predicted risk of in-hospital mortality of 30.4%.
- 13. The average Sequential Organ Failure Assessment (SOFA) score was 6.6 in 2015.
- 14. 75% of patients in MOH ICUs and 72% of patients in UMMC ICU received invasive ventilation with an average duration of 4.7 days.
- 15. The percentage of patients who received non-invasive ventilation increased from 5.1% in 2005 to 18.6% in 2015.
- 16. In MOH hospitals, 14.8% of ICU admissions received renal replacement therapy, with intermittent haemodialysis being the most common modality of therapy.
- 17. Among patients who were invasively ventilated, 9.4% had tracheostomy performed, with the median time from initiation of ventilation to tracheostomy being 7.5 days.

- 18. The decision to withdraw or withhold therapy was made in 39.4% of patients who died in ICU.
- 19. The incidence of VAP had decreased by more than half from 6.8 to 2.4 per 1000 ventilator days over the last five years.
- 20. Gram-negative organism accounted for 91% and 100% of causative organisms for VAP in MOH and UMMC ICUs respectively. *Acinetobacter spp., Klebsiella spp.,* and *Pseudomonas spp.* remained the 3 most common organisms causing VAP over the last 8 years in MOH ICUs. 60% of causative organisms causing VAP in MOH ICUs were multi-drug resistant strains.
- 21. The ventilator care bundle compliance rates for MOH hospitals improved from 96% in 2011 to 98.7% in 2015.
- 22. The unplanned extubation rate was 0.2 and 0.4 per 100 intubated days in MOH and UMMC ICUs respectively.
- 23. The mean incidence of pressure ulcers was 6.5 and 5.2 per 1000 ICU days in MOH and UMMC ICUs respectively.
- 24. The incidence of central venous catheter-related bloodstream infection in MOH and UMMC ICUs was 0.4 and 3.2 per 1000 catheter days respectively.
- 25. 68%, 28% and 4% of the organisms isolated for CVC-BSI were gram-negative, gram-positive and fungal respectively.
- 26. The predominant organisms causing CVC-BSI were *Klebsiella pneumonia* followed by *Acinetobacter spp.* and *Pseudomonas aeruginosa.*
- 27. The crude in-ICU and in-hospital mortality rates for MOH ICUs were 18.7% and 26.0% respectively.
- 28. The mean standardised mortality ratio was 0.69 [95%C.I. 0.47-0.95] and 0.68 [95%C.I.0.45 0.98] for MOH and UMMC ICUs respectively.
- 29. The average compliance rate to the Early Mobility in ICU protocol was 71.5% in 2015.
- 30. The average compliance rate to the SSKIN care bundle was 89.8% with a range of 62.3 to 100%).
- 31. The average all cause in-hospital mortality rate for patients admitted for dengue infection in MOH ICUs had increased from 6.4% in 2011 to 8.9% in 2015.

#### REFERENCES

| 1.  | Sydney E. S. Brown1, Sarah J Ratcliffe, Jeremy M Kahn and Scott D Halpern. The Epidemiology of Intensive Care Unit Readmissions in the United States. January 26, 2012, doi: 10.1164/rccm.201109-1720OC <i>Am J Respir Crit Care Med</i> .                      |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2   | Clinical Markers in Intensive care. In: Determining the Potential to Improve the Quality<br>of Care in Australian Health Care Organizations. Australian Council on Healthcare<br>Standards. Health Services Research Group, University of Newcastle. 2000; 52-4 |
| 3   | Garrousle-Orgeas M et al. Predictors of intensive care unit refusal in French intensive care units: a multi-centre study. <i>Crit Care Med</i> 2005; 33(4):750-755                                                                                              |
| 4.  | Vincent JL, Moreno R, Takala J, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure.<br>Intensive Care Med 1996;22:707-710                                                                                    |
| 5.  | Vincent JL et al. Sepsis in European intensive care units: Results of the SOAP study. <i>Crit Care Med</i> 2006;34(2):344-353                                                                                                                                   |
| 6.  | Piccinni P et al. Prospective multicentre study on epidemiology of acute kidney injury<br>in the ICU: a critical care nephrology Italian collaborative effort (NEFROINT) <i>Minerva</i><br><i>Anestesiologie</i> 2011 Nov 77(11):1072-83                        |
| 7.  | Le Gall JR, Lemeshow S, Saulnier F. A New Simplified Acute Physiology Score (SAPS II) based on a European/North American Multi-centre Study <i>JAMA</i> 1993;270(24):2957-2963                                                                                  |
| 8.  | Tai LL et al . Validation and recustomisation of Simplified Acute Physiologic score II<br>(SAPS II) in patients in Malaysian ICU. Poster presentation at the 13 <sup>th</sup> Western Pacific<br>Association of Critical Care Medicine Conference, Seoul 2004   |
| 9.  | Uchino S et al. Acute renal failure in critically ill patients. A multinational, multicenter study. <i>JAMA</i> 2005;294(7):813-818                                                                                                                             |
| 10. | Brieva JL et al. Withholding and withdrawal of life-sustaining therapies in intensive care: An Australian experience. <i>Crit Care Med</i> 2009;11(4):266-268                                                                                                   |
| 11  | Sprung CL et al End-of-life practices in European intensive care units: the Ethicus Study. <i>JAMA</i> 2003 Aug 13;290(6):790-7                                                                                                                                 |
| 12. | Dudeck MA et al. National Healthcare Safety Network (NHSN) Report, Data Summary for 2012, Device-associated Module. <i>Am J Infection Control</i> 2013;41:1148-66                                                                                               |
| 13. | Rosenthal VD et al. International Nosocomial Infection Control Consortium (INICC) report, data summary for 36 countries from 2004-2009. <i>Am J Infection Control</i> 2012; 40:396-407                                                                          |
| 14. | Hoste EA, Clermont G, Kersten A. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. <i>Crit Care</i> . 2006;10(3): R73. Epub 2006 May 12                                              |

| 15. | Payen D, de Pont AC, Sakr Y. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. <i>Crit Care</i> .2008;12:R74. Epub 2008 June 4                                     |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16. | Situasi Semasa Demam Denggi Di Malaysia Bagi Minggu 52/2011 (25 hingga 31 Dis 2011). <u>http://www.moh.gov.my</u>                                                                                                  |
| 17. | Situasi Semasa Demam Denggi Dan Chikungunya Di Malaysia Bagi Minggu 52/2010<br>(26 Dis 2010 hingga 01 Jan 2011). <u>http://www.moh.gov.my</u>                                                                      |
| 18. | Situasi Demam Denggi Di Malaysia Bagi Minggu 52/2012 (23 - 29 Dis 2012)<br>http://www.moh.gov.my/press_releases/357                                                                                                |
| 19. | Situasi Demam Denggi Di Malaysia Bagi Minggu 52/2013 (22 - 28 Dis 2013)<br>http://www.moh.gov.my/index.php/database_stores/store_view_page/17/458                                                                  |
| 20. | Berenholtz SM, Pronovost PJ, Lipset PA, et al. Eliminating catheter-related bloodstream infection in the intensive care unit. <i>Crit Care Med</i> . 2004 ; 32: 2014 - 2020.                                       |
| 21. | Pronovost PJ, Needham DM, Berenholtz SM et al. An intervention to decrease catheter-related bloodstream infections in the ICU. <i>N Engl J Med.</i> 2006; 355(26):2725-32.                                         |
| 22. | Gahlot R et al. Catheter-related bloodstream infections. International J of Critical Illness & Injury Science 2014;4(2):162-167                                                                                    |
| 23  | Dudeck MA et al. National Healthcare Safety Network (NHSN) Report, Data Summary for 2013, Device-associated Module. <i>Am J Infection Control</i> 2015; 43:206-221                                                 |
| 24  | http://reliefweb.int/report/malaysia/dengue-situation-update-456-13-january-2015                                                                                                                                   |
| 25  | Maki DG, Kluger DM, Crnich CJ. The risk of bloodstream infection in adults with different intravascular devices: a systematic of 200 published prospective studies. <i>Mayo Clin Proc.</i> 2006;81(9):1159–1171    |
| 26  | Hopkins RO, Jackson JC: Short and long term cognitive outcomes in intensive care unit survivors. <i>Clin Chest Med</i> 2009; 30: 143A153.                                                                          |
| 27  | Schweickert WD, Pohlman MC, Pohlman AS, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomized controlled trial. <i>Lancet</i> 2009;373(9678):1874–1882. |
| 28  | Needham DM, Korupolu R, Zanni JM, et al. Early physical medicine and rehabilitation for patients with acute respiratory failure: a quality improvement project. <i>Arch Phys Med Rehabil</i> 2010;91(4):!536A542.  |
| 29  | https://kpkesihatan.com/2016/01/11/kenyataan-akhbar-kpk-11-jan-2016-situasi-semasa<br>demam-denggi-di-malaysia-bagi-minggu-12016-3-januari-hingga-9-januari-2016/                                                  |
| 30  | Berwick DM, Calkins DR, McCannon CJ et al. The 100,000 Lives Campaign: setting a goal and a deadline or improving health care quality. JAMA. 2006; 295: 324 – 327.                                                 |

| 31 | National Healthcare Safety Network (NHSN) July 2013 CDC/NHSN Protocol      |
|----|----------------------------------------------------------------------------|
|    | Clarifications 2013. [http://www.cdc.gov/nhsn/PDFs/pscManual/10-VAE_FINAL. |
|    | pdf]                                                                       |
|    |                                                                            |